The edge spectrum of the saturation number for small paths
Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and th...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2012-09, Vol.312 (17), p.2682-2689 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2689 |
---|---|
container_issue | 17 |
container_start_page | 2682 |
container_title | Discrete mathematics |
container_volume | 312 |
creator | Gould, Ronald J. Tang, Wenliang Wei, Erling Zhang, Cun-Quan |
description | Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and the extremal number ex(n,H) is defined as maxG∈SAT(n,H)|E(G)|. A natural question is that of whether we can find an H-saturated graph with m edges for any sat(n,H)≤m≤ex(n,H). The set of all possible values m is called the edge spectrum for H-saturated graphs. In this paper we investigate the edge spectrum for Pi-saturated graphs, where 2≤i≤6. It is trivial for the case of P2 that the saturated graph must be an empty graph. |
doi_str_mv | 10.1016/j.disc.2012.01.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082211951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X1200026X</els_id><sourcerecordid>1082211951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c1cffe56c82f8e27f13d54c2e0d03e4014b7a78c76856fed0bb3a18eac05d9c93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFOOXnbNJN3dVLxIsSoUvFToLWSTid2y_0yygt_elHoWBoZ5vDfwfoTcAsuBQXl_yG0TTM4Z8JxBGn5GZiArnpUSdudkxpKUibLYXZKrEA4s3aWQM_Kw3SNF-4k0jGiinzo6OBqTGHScvI7N0NN-6mr01A2ehk63LR113IdrcuF0G_Dmb8_Jx_p5u3rNNu8vb6unTWaEEDEzYJzDojSSO4m8ciBssTAcmWUCFwwWdaUraapSFqVDy-paaJCoDSvs0izFnNyd_o5--JowRNWlrti2usdhCgqY5BxgWUCy8pPV-CEEj06Nvum0_0kmdQSlDuoISh1BKQZpeAo9nkKYSnw36FUwDfYGbeMTEmWH5r_4LyZMcYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082211951</pqid></control><display><type>article</type><title>The edge spectrum of the saturation number for small paths</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gould, Ronald J. ; Tang, Wenliang ; Wei, Erling ; Zhang, Cun-Quan</creator><creatorcontrib>Gould, Ronald J. ; Tang, Wenliang ; Wei, Erling ; Zhang, Cun-Quan</creatorcontrib><description>Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and the extremal number ex(n,H) is defined as maxG∈SAT(n,H)|E(G)|. A natural question is that of whether we can find an H-saturated graph with m edges for any sat(n,H)≤m≤ex(n,H). The set of all possible values m is called the edge spectrum for H-saturated graphs. In this paper we investigate the edge spectrum for Pi-saturated graphs, where 2≤i≤6. It is trivial for the case of P2 that the saturated graph must be an empty graph.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2012.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Edge spectrum ; Extremal number ; Graphs ; Mathematical analysis ; Path ; Reproduction ; Saturation ; Saturation number</subject><ispartof>Discrete mathematics, 2012-09, Vol.312 (17), p.2682-2689</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c1cffe56c82f8e27f13d54c2e0d03e4014b7a78c76856fed0bb3a18eac05d9c93</citedby><cites>FETCH-LOGICAL-c333t-c1cffe56c82f8e27f13d54c2e0d03e4014b7a78c76856fed0bb3a18eac05d9c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012365X1200026X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gould, Ronald J.</creatorcontrib><creatorcontrib>Tang, Wenliang</creatorcontrib><creatorcontrib>Wei, Erling</creatorcontrib><creatorcontrib>Zhang, Cun-Quan</creatorcontrib><title>The edge spectrum of the saturation number for small paths</title><title>Discrete mathematics</title><description>Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and the extremal number ex(n,H) is defined as maxG∈SAT(n,H)|E(G)|. A natural question is that of whether we can find an H-saturated graph with m edges for any sat(n,H)≤m≤ex(n,H). The set of all possible values m is called the edge spectrum for H-saturated graphs. In this paper we investigate the edge spectrum for Pi-saturated graphs, where 2≤i≤6. It is trivial for the case of P2 that the saturated graph must be an empty graph.</description><subject>Edge spectrum</subject><subject>Extremal number</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Path</subject><subject>Reproduction</subject><subject>Saturation</subject><subject>Saturation number</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFOOXnbNJN3dVLxIsSoUvFToLWSTid2y_0yygt_elHoWBoZ5vDfwfoTcAsuBQXl_yG0TTM4Z8JxBGn5GZiArnpUSdudkxpKUibLYXZKrEA4s3aWQM_Kw3SNF-4k0jGiinzo6OBqTGHScvI7N0NN-6mr01A2ehk63LR113IdrcuF0G_Dmb8_Jx_p5u3rNNu8vb6unTWaEEDEzYJzDojSSO4m8ciBssTAcmWUCFwwWdaUraapSFqVDy-paaJCoDSvs0izFnNyd_o5--JowRNWlrti2usdhCgqY5BxgWUCy8pPV-CEEj06Nvum0_0kmdQSlDuoISh1BKQZpeAo9nkKYSnw36FUwDfYGbeMTEmWH5r_4LyZMcYk</recordid><startdate>20120906</startdate><enddate>20120906</enddate><creator>Gould, Ronald J.</creator><creator>Tang, Wenliang</creator><creator>Wei, Erling</creator><creator>Zhang, Cun-Quan</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120906</creationdate><title>The edge spectrum of the saturation number for small paths</title><author>Gould, Ronald J. ; Tang, Wenliang ; Wei, Erling ; Zhang, Cun-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c1cffe56c82f8e27f13d54c2e0d03e4014b7a78c76856fed0bb3a18eac05d9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Edge spectrum</topic><topic>Extremal number</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Path</topic><topic>Reproduction</topic><topic>Saturation</topic><topic>Saturation number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gould, Ronald J.</creatorcontrib><creatorcontrib>Tang, Wenliang</creatorcontrib><creatorcontrib>Wei, Erling</creatorcontrib><creatorcontrib>Zhang, Cun-Quan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gould, Ronald J.</au><au>Tang, Wenliang</au><au>Wei, Erling</au><au>Zhang, Cun-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The edge spectrum of the saturation number for small paths</atitle><jtitle>Discrete mathematics</jtitle><date>2012-09-06</date><risdate>2012</risdate><volume>312</volume><issue>17</issue><spage>2682</spage><epage>2689</epage><pages>2682-2689</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and the extremal number ex(n,H) is defined as maxG∈SAT(n,H)|E(G)|. A natural question is that of whether we can find an H-saturated graph with m edges for any sat(n,H)≤m≤ex(n,H). The set of all possible values m is called the edge spectrum for H-saturated graphs. In this paper we investigate the edge spectrum for Pi-saturated graphs, where 2≤i≤6. It is trivial for the case of P2 that the saturated graph must be an empty graph.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2012.01.012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2012-09, Vol.312 (17), p.2682-2689 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1082211951 |
source | ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Edge spectrum Extremal number Graphs Mathematical analysis Path Reproduction Saturation Saturation number |
title | The edge spectrum of the saturation number for small paths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20edge%20spectrum%20of%20the%20saturation%20number%20for%20small%20paths&rft.jtitle=Discrete%20mathematics&rft.au=Gould,%20Ronald%20J.&rft.date=2012-09-06&rft.volume=312&rft.issue=17&rft.spage=2682&rft.epage=2689&rft.pages=2682-2689&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2012.01.012&rft_dat=%3Cproquest_cross%3E1082211951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082211951&rft_id=info:pmid/&rft_els_id=S0012365X1200026X&rfr_iscdi=true |