The edge spectrum of the saturation number for small paths

Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2012-09, Vol.312 (17), p.2682-2689
Hauptverfasser: Gould, Ronald J., Tang, Wenliang, Wei, Erling, Zhang, Cun-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as minG∈SAT(n,H)|E(G)|, and the extremal number ex(n,H) is defined as maxG∈SAT(n,H)|E(G)|. A natural question is that of whether we can find an H-saturated graph with m edges for any sat(n,H)≤m≤ex(n,H). The set of all possible values m is called the edge spectrum for H-saturated graphs. In this paper we investigate the edge spectrum for Pi-saturated graphs, where 2≤i≤6. It is trivial for the case of P2 that the saturated graph must be an empty graph.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2012.01.012