Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen

The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress–strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2012-11, Vol.49, p.130-141
Hauptverfasser: Alves, M., Karagiozova, D., Micheli, G.B., Calle, M.A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 130
container_title International journal of impact engineering
container_volume 49
creator Alves, M.
Karagiozova, D.
Micheli, G.B.
Calle, M.A.G.
description The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress–strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress–strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. ► Friction correction for Hopkinson bar compression tests is presented. ► Analytical model is developed and explored. ► Model is verified by finite element analysis and experiments. ► Traditional Hopkinson bar analysis needs a correction factor in the stress.
doi_str_mv 10.1016/j.ijimpeng.2012.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082209479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X12000814</els_id><sourcerecordid>1082209479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1c28d83f0725b965bf8b4276fb604d54af08d4e8f9ab338302203823db3799e03</originalsourceid><addsrcrecordid>eNqFkMtq3TAQhkVoIadpXqFoU-jG7liSLXnXEpqmcCCbFrITsjxK59S3SnYhb1-Zk3YbGBiY-f-5fIy9q6CsoGo-nko60bjg9FgKqEQJqgSoL9ihMrotZA3tK3YALVWhlXy4ZG9SOgFUGmo4MDzSSCtNj3z9iZymMGw4eeRz4CGSX2meeI69mZaBVn43L79oSrm2RExpi8g7F_mKaU28e-Jb2oc5HveUFvQ04vSWvQ5uSHj9nK_Yj9sv32_uiuP91283n4-Fl7pei8oL0xsZQIu6a5u6C6ZTQjeha0D1tXIBTK_QhNZ1UhoJQoA0Qvad1G2LIK_Yh_PcJc6_t3ySHSl5HAY34bwlW4HJllbpNkubs9THOaWIwS6RRhefssjuXO3J_uNqd64WlM1cs_H98w6XvBtCdJOn9N8tGmFA1fstn846zA__IYw2edrZ9hTRr7af6aVVfwHT-JIT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082209479</pqid></control><display><type>article</type><title>Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Alves, M. ; Karagiozova, D. ; Micheli, G.B. ; Calle, M.A.G.</creator><creatorcontrib>Alves, M. ; Karagiozova, D. ; Micheli, G.B. ; Calle, M.A.G.</creatorcontrib><description>The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress–strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress–strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. ► Friction correction for Hopkinson bar compression tests is presented. ► Analytical model is developed and explored. ► Model is verified by finite element analysis and experiments. ► Traditional Hopkinson bar analysis needs a correction factor in the stress.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2012.04.005</identifier><identifier>CODEN: IJIED4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Constraining ; Deformation ; Disks ; Ductile materials ; Ductility ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Friction ; Fundamental areas of phenomenology (including applications) ; Hopkinson pressure bar ; Material characterization ; Physics ; Ring specimen ; Solid mechanics ; Specimen geometry ; Static elasticity (thermoelasticity...) ; Stress strain curves ; Stress-strain relationships ; Structural and continuum mechanics</subject><ispartof>International journal of impact engineering, 2012-11, Vol.49, p.130-141</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1c28d83f0725b965bf8b4276fb604d54af08d4e8f9ab338302203823db3799e03</citedby><cites>FETCH-LOGICAL-c375t-1c28d83f0725b965bf8b4276fb604d54af08d4e8f9ab338302203823db3799e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijimpeng.2012.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26280450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alves, M.</creatorcontrib><creatorcontrib>Karagiozova, D.</creatorcontrib><creatorcontrib>Micheli, G.B.</creatorcontrib><creatorcontrib>Calle, M.A.G.</creatorcontrib><title>Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen</title><title>International journal of impact engineering</title><description>The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress–strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress–strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. ► Friction correction for Hopkinson bar compression tests is presented. ► Analytical model is developed and explored. ► Model is verified by finite element analysis and experiments. ► Traditional Hopkinson bar analysis needs a correction factor in the stress.</description><subject>Constraining</subject><subject>Deformation</subject><subject>Disks</subject><subject>Ductile materials</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Friction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hopkinson pressure bar</subject><subject>Material characterization</subject><subject>Physics</subject><subject>Ring specimen</subject><subject>Solid mechanics</subject><subject>Specimen geometry</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress strain curves</subject><subject>Stress-strain relationships</subject><subject>Structural and continuum mechanics</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtq3TAQhkVoIadpXqFoU-jG7liSLXnXEpqmcCCbFrITsjxK59S3SnYhb1-Zk3YbGBiY-f-5fIy9q6CsoGo-nko60bjg9FgKqEQJqgSoL9ihMrotZA3tK3YALVWhlXy4ZG9SOgFUGmo4MDzSSCtNj3z9iZymMGw4eeRz4CGSX2meeI69mZaBVn43L79oSrm2RExpi8g7F_mKaU28e-Jb2oc5HveUFvQ04vSWvQ5uSHj9nK_Yj9sv32_uiuP91283n4-Fl7pei8oL0xsZQIu6a5u6C6ZTQjeha0D1tXIBTK_QhNZ1UhoJQoA0Qvad1G2LIK_Yh_PcJc6_t3ySHSl5HAY34bwlW4HJllbpNkubs9THOaWIwS6RRhefssjuXO3J_uNqd64WlM1cs_H98w6XvBtCdJOn9N8tGmFA1fstn846zA__IYw2edrZ9hTRr7af6aVVfwHT-JIT</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Alves, M.</creator><creator>Karagiozova, D.</creator><creator>Micheli, G.B.</creator><creator>Calle, M.A.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20121101</creationdate><title>Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen</title><author>Alves, M. ; Karagiozova, D. ; Micheli, G.B. ; Calle, M.A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1c28d83f0725b965bf8b4276fb604d54af08d4e8f9ab338302203823db3799e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Constraining</topic><topic>Deformation</topic><topic>Disks</topic><topic>Ductile materials</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Friction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hopkinson pressure bar</topic><topic>Material characterization</topic><topic>Physics</topic><topic>Ring specimen</topic><topic>Solid mechanics</topic><topic>Specimen geometry</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress strain curves</topic><topic>Stress-strain relationships</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, M.</creatorcontrib><creatorcontrib>Karagiozova, D.</creatorcontrib><creatorcontrib>Micheli, G.B.</creatorcontrib><creatorcontrib>Calle, M.A.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, M.</au><au>Karagiozova, D.</au><au>Micheli, G.B.</au><au>Calle, M.A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen</atitle><jtitle>International journal of impact engineering</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>49</volume><spage>130</spage><epage>141</epage><pages>130-141</pages><issn>0734-743X</issn><eissn>1879-3509</eissn><coden>IJIED4</coden><abstract>The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress–strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress–strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. ► Friction correction for Hopkinson bar compression tests is presented. ► Analytical model is developed and explored. ► Model is verified by finite element analysis and experiments. ► Traditional Hopkinson bar analysis needs a correction factor in the stress.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2012.04.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2012-11, Vol.49, p.130-141
issn 0734-743X
1879-3509
language eng
recordid cdi_proquest_miscellaneous_1082209479
source ScienceDirect Journals (5 years ago - present)
subjects Constraining
Deformation
Disks
Ductile materials
Ductility
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Friction
Fundamental areas of phenomenology (including applications)
Hopkinson pressure bar
Material characterization
Physics
Ring specimen
Solid mechanics
Specimen geometry
Static elasticity (thermoelasticity...)
Stress strain curves
Stress-strain relationships
Structural and continuum mechanics
title Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20the%20influence%20of%20friction%20on%20the%20split%20Hopkinson%20pressure%20bar%20tests%20by%20using%20a%20ring%20specimen&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Alves,%20M.&rft.date=2012-11-01&rft.volume=49&rft.spage=130&rft.epage=141&rft.pages=130-141&rft.issn=0734-743X&rft.eissn=1879-3509&rft.coden=IJIED4&rft_id=info:doi/10.1016/j.ijimpeng.2012.04.005&rft_dat=%3Cproquest_cross%3E1082209479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082209479&rft_id=info:pmid/&rft_els_id=S0734743X12000814&rfr_iscdi=true