Telescience and interferometric metrology on the international space station

Scientific experiments performed in space require real-time control by the scientists on earth, i.e. Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2005-11, Vol.57 (10), p.800-810
Hauptverfasser: Kreis, Thomas, Jüptner, Werner, Becker, Joachim, Henrichs, Alois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 10
container_start_page 800
container_title Acta astronautica
container_volume 57
creator Kreis, Thomas
Jüptner, Werner
Becker, Joachim
Henrichs, Alois
description Scientific experiments performed in space require real-time control by the scientists on earth, i.e. Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least 1 k × 1 k spatial resolution, 8 bit pixel depth and 33 ms (30 fps) time resolution. This results in data rates (240 Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2 Mbps continuously. This paper concentrates on the compressibility of interferometric image data for Telescience. In particular, a solution is presented for Electronic Speckle Pattern Interferometry ( ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow Telescience with an image sequence of 15 fps (120 Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.
doi_str_mv 10.1016/j.actaastro.2005.03.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082195146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009457650500161X</els_id><sourcerecordid>1082195146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bcb1686c29c788b61a9bd5866099f072d33830c07449561a4291ea09100ce2083</originalsourceid><addsrcrecordid>eNqFkMFOwzAQRC0EEqXwDeTIJWHtJI59rCqgSJW4lLPlOBtwlcbFdpH697ik4sppNdqZ0e4j5J5CQYHyx22hTdQ6RO8KBlAXUBbAqwsyo6KROYMSLskMQFZ53fD6mtyEsAWAhgk5I-sNDhiMxdFgpscus2NE36N3O4zemuw03OA-jpkbs_iJk2HU0bpRD1nY6xQM8VffkqteDwHvznNO3p-fNstVvn57eV0u1rlhsop5a1rKBU_CNEK0nGrZdrXgHKTs011dWYoSDDRVJeu0rZikqEFSAIMMRDknD1Pv3ruvA4aodjYYHAY9ojsERUEwKmta8WRtJqvxLgSPvdp7u9P-mEzqxE9t1R8_deKnoFSJX0oupiSmT74tenXG1FmPJqrO2X87fgDOJ32r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082195146</pqid></control><display><type>article</type><title>Telescience and interferometric metrology on the international space station</title><source>Elsevier ScienceDirect Journals</source><creator>Kreis, Thomas ; Jüptner, Werner ; Becker, Joachim ; Henrichs, Alois</creator><creatorcontrib>Kreis, Thomas ; Jüptner, Werner ; Becker, Joachim ; Henrichs, Alois</creatorcontrib><description>Scientific experiments performed in space require real-time control by the scientists on earth, i.e. Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least 1 k × 1 k spatial resolution, 8 bit pixel depth and 33 ms (30 fps) time resolution. This results in data rates (240 Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2 Mbps continuously. This paper concentrates on the compressibility of interferometric image data for Telescience. In particular, a solution is presented for Electronic Speckle Pattern Interferometry ( ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow Telescience with an image sequence of 15 fps (120 Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2005.03.064</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Electronic speckle pattern interferometry ; Fluid dynamics ; Fluid flow ; Imaging ; Interferometry ; International Space Station ; Telescience</subject><ispartof>Acta astronautica, 2005-11, Vol.57 (10), p.800-810</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-bcb1686c29c788b61a9bd5866099f072d33830c07449561a4291ea09100ce2083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009457650500161X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Kreis, Thomas</creatorcontrib><creatorcontrib>Jüptner, Werner</creatorcontrib><creatorcontrib>Becker, Joachim</creatorcontrib><creatorcontrib>Henrichs, Alois</creatorcontrib><title>Telescience and interferometric metrology on the international space station</title><title>Acta astronautica</title><description>Scientific experiments performed in space require real-time control by the scientists on earth, i.e. Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least 1 k × 1 k spatial resolution, 8 bit pixel depth and 33 ms (30 fps) time resolution. This results in data rates (240 Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2 Mbps continuously. This paper concentrates on the compressibility of interferometric image data for Telescience. In particular, a solution is presented for Electronic Speckle Pattern Interferometry ( ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow Telescience with an image sequence of 15 fps (120 Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.</description><subject>Electronic speckle pattern interferometry</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Imaging</subject><subject>Interferometry</subject><subject>International Space Station</subject><subject>Telescience</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAQRC0EEqXwDeTIJWHtJI59rCqgSJW4lLPlOBtwlcbFdpH697ik4sppNdqZ0e4j5J5CQYHyx22hTdQ6RO8KBlAXUBbAqwsyo6KROYMSLskMQFZ53fD6mtyEsAWAhgk5I-sNDhiMxdFgpscus2NE36N3O4zemuw03OA-jpkbs_iJk2HU0bpRD1nY6xQM8VffkqteDwHvznNO3p-fNstVvn57eV0u1rlhsop5a1rKBU_CNEK0nGrZdrXgHKTs011dWYoSDDRVJeu0rZikqEFSAIMMRDknD1Pv3ruvA4aodjYYHAY9ojsERUEwKmta8WRtJqvxLgSPvdp7u9P-mEzqxE9t1R8_deKnoFSJX0oupiSmT74tenXG1FmPJqrO2X87fgDOJ32r</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Kreis, Thomas</creator><creator>Jüptner, Werner</creator><creator>Becker, Joachim</creator><creator>Henrichs, Alois</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20051101</creationdate><title>Telescience and interferometric metrology on the international space station</title><author>Kreis, Thomas ; Jüptner, Werner ; Becker, Joachim ; Henrichs, Alois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bcb1686c29c788b61a9bd5866099f072d33830c07449561a4291ea09100ce2083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Electronic speckle pattern interferometry</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Imaging</topic><topic>Interferometry</topic><topic>International Space Station</topic><topic>Telescience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreis, Thomas</creatorcontrib><creatorcontrib>Jüptner, Werner</creatorcontrib><creatorcontrib>Becker, Joachim</creatorcontrib><creatorcontrib>Henrichs, Alois</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreis, Thomas</au><au>Jüptner, Werner</au><au>Becker, Joachim</au><au>Henrichs, Alois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telescience and interferometric metrology on the international space station</atitle><jtitle>Acta astronautica</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>57</volume><issue>10</issue><spage>800</spage><epage>810</epage><pages>800-810</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Scientific experiments performed in space require real-time control by the scientists on earth, i.e. Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least 1 k × 1 k spatial resolution, 8 bit pixel depth and 33 ms (30 fps) time resolution. This results in data rates (240 Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2 Mbps continuously. This paper concentrates on the compressibility of interferometric image data for Telescience. In particular, a solution is presented for Electronic Speckle Pattern Interferometry ( ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow Telescience with an image sequence of 15 fps (120 Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2005.03.064</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2005-11, Vol.57 (10), p.800-810
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_miscellaneous_1082195146
source Elsevier ScienceDirect Journals
subjects Electronic speckle pattern interferometry
Fluid dynamics
Fluid flow
Imaging
Interferometry
International Space Station
Telescience
title Telescience and interferometric metrology on the international space station
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telescience%20and%20interferometric%20metrology%20on%20the%20international%20space%20station&rft.jtitle=Acta%20astronautica&rft.au=Kreis,%20Thomas&rft.date=2005-11-01&rft.volume=57&rft.issue=10&rft.spage=800&rft.epage=810&rft.pages=800-810&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2005.03.064&rft_dat=%3Cproquest_cross%3E1082195146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082195146&rft_id=info:pmid/&rft_els_id=S009457650500161X&rfr_iscdi=true