Telescience and interferometric metrology on the international space station
Scientific experiments performed in space require real-time control by the scientists on earth, i.e. Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electroni...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2005-11, Vol.57 (10), p.800-810 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 810 |
---|---|
container_issue | 10 |
container_start_page | 800 |
container_title | Acta astronautica |
container_volume | 57 |
creator | Kreis, Thomas Jüptner, Werner Becker, Joachim Henrichs, Alois |
description | Scientific experiments performed in space require real-time control by the scientists on earth, i.e.
Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least
1
k
×
1
k
spatial resolution, 8
bit pixel depth and 33
ms (30
fps) time resolution. This results in data rates (240
Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2
Mbps continuously. This paper concentrates on the compressibility of interferometric image data for
Telescience. In particular, a solution is presented for
Electronic Speckle Pattern Interferometry (
ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow
Telescience with an image sequence of 15
fps (120
Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry. |
doi_str_mv | 10.1016/j.actaastro.2005.03.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082195146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009457650500161X</els_id><sourcerecordid>1082195146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bcb1686c29c788b61a9bd5866099f072d33830c07449561a4291ea09100ce2083</originalsourceid><addsrcrecordid>eNqFkMFOwzAQRC0EEqXwDeTIJWHtJI59rCqgSJW4lLPlOBtwlcbFdpH697ik4sppNdqZ0e4j5J5CQYHyx22hTdQ6RO8KBlAXUBbAqwsyo6KROYMSLskMQFZ53fD6mtyEsAWAhgk5I-sNDhiMxdFgpscus2NE36N3O4zemuw03OA-jpkbs_iJk2HU0bpRD1nY6xQM8VffkqteDwHvznNO3p-fNstVvn57eV0u1rlhsop5a1rKBU_CNEK0nGrZdrXgHKTs011dWYoSDDRVJeu0rZikqEFSAIMMRDknD1Pv3ruvA4aodjYYHAY9ojsERUEwKmta8WRtJqvxLgSPvdp7u9P-mEzqxE9t1R8_deKnoFSJX0oupiSmT74tenXG1FmPJqrO2X87fgDOJ32r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082195146</pqid></control><display><type>article</type><title>Telescience and interferometric metrology on the international space station</title><source>Elsevier ScienceDirect Journals</source><creator>Kreis, Thomas ; Jüptner, Werner ; Becker, Joachim ; Henrichs, Alois</creator><creatorcontrib>Kreis, Thomas ; Jüptner, Werner ; Becker, Joachim ; Henrichs, Alois</creatorcontrib><description>Scientific experiments performed in space require real-time control by the scientists on earth, i.e.
Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least
1
k
×
1
k
spatial resolution, 8
bit pixel depth and 33
ms (30
fps) time resolution. This results in data rates (240
Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2
Mbps continuously. This paper concentrates on the compressibility of interferometric image data for
Telescience. In particular, a solution is presented for
Electronic Speckle Pattern Interferometry (
ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow
Telescience with an image sequence of 15
fps (120
Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2005.03.064</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Electronic speckle pattern interferometry ; Fluid dynamics ; Fluid flow ; Imaging ; Interferometry ; International Space Station ; Telescience</subject><ispartof>Acta astronautica, 2005-11, Vol.57 (10), p.800-810</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-bcb1686c29c788b61a9bd5866099f072d33830c07449561a4291ea09100ce2083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009457650500161X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Kreis, Thomas</creatorcontrib><creatorcontrib>Jüptner, Werner</creatorcontrib><creatorcontrib>Becker, Joachim</creatorcontrib><creatorcontrib>Henrichs, Alois</creatorcontrib><title>Telescience and interferometric metrology on the international space station</title><title>Acta astronautica</title><description>Scientific experiments performed in space require real-time control by the scientists on earth, i.e.
Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least
1
k
×
1
k
spatial resolution, 8
bit pixel depth and 33
ms (30
fps) time resolution. This results in data rates (240
Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2
Mbps continuously. This paper concentrates on the compressibility of interferometric image data for
Telescience. In particular, a solution is presented for
Electronic Speckle Pattern Interferometry (
ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow
Telescience with an image sequence of 15
fps (120
Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.</description><subject>Electronic speckle pattern interferometry</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Imaging</subject><subject>Interferometry</subject><subject>International Space Station</subject><subject>Telescience</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAQRC0EEqXwDeTIJWHtJI59rCqgSJW4lLPlOBtwlcbFdpH697ik4sppNdqZ0e4j5J5CQYHyx22hTdQ6RO8KBlAXUBbAqwsyo6KROYMSLskMQFZ53fD6mtyEsAWAhgk5I-sNDhiMxdFgpscus2NE36N3O4zemuw03OA-jpkbs_iJk2HU0bpRD1nY6xQM8VffkqteDwHvznNO3p-fNstVvn57eV0u1rlhsop5a1rKBU_CNEK0nGrZdrXgHKTs011dWYoSDDRVJeu0rZikqEFSAIMMRDknD1Pv3ruvA4aodjYYHAY9ojsERUEwKmta8WRtJqvxLgSPvdp7u9P-mEzqxE9t1R8_deKnoFSJX0oupiSmT74tenXG1FmPJqrO2X87fgDOJ32r</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Kreis, Thomas</creator><creator>Jüptner, Werner</creator><creator>Becker, Joachim</creator><creator>Henrichs, Alois</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20051101</creationdate><title>Telescience and interferometric metrology on the international space station</title><author>Kreis, Thomas ; Jüptner, Werner ; Becker, Joachim ; Henrichs, Alois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bcb1686c29c788b61a9bd5866099f072d33830c07449561a4291ea09100ce2083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Electronic speckle pattern interferometry</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Imaging</topic><topic>Interferometry</topic><topic>International Space Station</topic><topic>Telescience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreis, Thomas</creatorcontrib><creatorcontrib>Jüptner, Werner</creatorcontrib><creatorcontrib>Becker, Joachim</creatorcontrib><creatorcontrib>Henrichs, Alois</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreis, Thomas</au><au>Jüptner, Werner</au><au>Becker, Joachim</au><au>Henrichs, Alois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telescience and interferometric metrology on the international space station</atitle><jtitle>Acta astronautica</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>57</volume><issue>10</issue><spage>800</spage><epage>810</epage><pages>800-810</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Scientific experiments performed in space require real-time control by the scientists on earth, i.e.
Telescience/Teleoperation. In fluid science research, non-invasive optical diagnostic tools help to gain a better understanding of phenomena within transparent media. During the last years, electronic cameras started to take over the role of quantitative imaging from photographic imaging. For that purpose cameras must offer at least
1
k
×
1
k
spatial resolution, 8
bit pixel depth and 33
ms (30
fps) time resolution. This results in data rates (240
Mbps) far beyond the downlink capacities of typical carriers for scientific payloads. A double rack on the International Space Station (ISS), e.g. gets only 2
Mbps continuously. This paper concentrates on the compressibility of interferometric image data for
Telescience. In particular, a solution is presented for
Electronic Speckle Pattern Interferometry (
ESPI), one of the interferometers, e.g. planned for the Fluid Science Laboratory (FSL) on ISS. Pre-tests had shown that ESPI raw images could hardly be compressed, i.e. by a factor 1–1.5 only. But a factor of 60 is at least required to allow
Telescience with an image sequence of 15
fps (120
Mbps), still providing a good qualitative impression about the spatial and temporal behaviour of an experiment. This paper provides answers concerning qualitative imaging with ESPI in addition to Shearing Interferometry and Holographic Interferometry.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2005.03.064</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2005-11, Vol.57 (10), p.800-810 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082195146 |
source | Elsevier ScienceDirect Journals |
subjects | Electronic speckle pattern interferometry Fluid dynamics Fluid flow Imaging Interferometry International Space Station Telescience |
title | Telescience and interferometric metrology on the international space station |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telescience%20and%20interferometric%20metrology%20on%20the%20international%20space%20station&rft.jtitle=Acta%20astronautica&rft.au=Kreis,%20Thomas&rft.date=2005-11-01&rft.volume=57&rft.issue=10&rft.spage=800&rft.epage=810&rft.pages=800-810&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2005.03.064&rft_dat=%3Cproquest_cross%3E1082195146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082195146&rft_id=info:pmid/&rft_els_id=S009457650500161X&rfr_iscdi=true |