Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices
When exact dynamic stiffness matrices are used to compute natural frequencies and vibration modes for skeletal and certain other structures, a challenging transcendental eigenvalue problem results. The present paper presents a newly developed, mathematically elegant and computationally efficient met...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2003-03, Vol.56 (12), p.1795-1814 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1814 |
---|---|
container_issue | 12 |
container_start_page | 1795 |
container_title | International journal for numerical methods in engineering |
container_volume | 56 |
creator | Yuan, Si Ye, Kangsheng Williams, Fred W. Kennedy, David |
description | When exact dynamic stiffness matrices are used to compute natural frequencies and vibration modes for skeletal and certain other structures, a challenging transcendental eigenvalue problem results. The present paper presents a newly developed, mathematically elegant and computationally efficient method for accurate and reliable computation of both natural frequencies and vibration modes. The method can also be applied to buckling problems. The transcendental eigenvalue problem is first reduced to a generalized linear eigenvalue problem by using Newton's method in the vicinity of an exact natural frequency identified by the Wittrick–Williams algorithm. Then the generalized linear eigenvalue problem is effectively solved by using a standard inverse iteration or subspace iteration method. The recursive use of the Newton method employing the Wittrick–Williams algorithm to guide and guard each Newton correction gives secure second order convergence on both natural frequencies and mode vectors. The second order mode accuracy is a major advantage over earlier transcendental eigenvalue solution methods, which typically give modes of much lower accuracy than that of the natural frequencies. The excellent performance of the method is demonstrated by numerical examples, including some demanding problems, e.g. with coincident natural frequencies, with rigid body motions and large‐scale structures. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082194938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082194938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2950-73d9f337466e8df1bd5633694d37bc311dc967db279042a293982966ed52c1ae3</originalsourceid><addsrcrecordid>eNp10E1P3DAQBmCraqVuKeIv-AZSlcUfSRwfKwTbSgusVkUcLa89AdPEAU-ydP99XQX1xmlGmmdGo5eQE86WnDFxHntY1iX7QBacaVUwwdRHssgTXVS64Z_JF8QnxjivmFyQly24KWHYA0VwQ_R0SB4Sze0e0gNEB7SH8XHwtB0SjXacku1om-BlysMASG1e6gefu9dHiHTCEB-oP0TbB0dxDG0bAZH2dkzBAX4ln1rbIRy_1SNyd3X56-JHsb5d_bz4vi6c0BUrlPS6lVKVdQ2Nb_nOV7WUtS69VDsnOfdO18rvhNKsFFZoqRuhM_aVcNyCPCJn893nNORfcTR9QAddZyMMExrOGsF1qWWT6elMXRoQE7TmOYXepkNG5l-oJodqcqhZfpvla-jg8B4zN9eXsy5mHXCEP_-1Tb9NraSqzP3Nyqy322a7qTZmI_8CsquIlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082194938</pqid></control><display><type>article</type><title>Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices</title><source>Wiley Journals</source><creator>Yuan, Si ; Ye, Kangsheng ; Williams, Fred W. ; Kennedy, David</creator><creatorcontrib>Yuan, Si ; Ye, Kangsheng ; Williams, Fred W. ; Kennedy, David</creatorcontrib><description>When exact dynamic stiffness matrices are used to compute natural frequencies and vibration modes for skeletal and certain other structures, a challenging transcendental eigenvalue problem results. The present paper presents a newly developed, mathematically elegant and computationally efficient method for accurate and reliable computation of both natural frequencies and vibration modes. The method can also be applied to buckling problems. The transcendental eigenvalue problem is first reduced to a generalized linear eigenvalue problem by using Newton's method in the vicinity of an exact natural frequency identified by the Wittrick–Williams algorithm. Then the generalized linear eigenvalue problem is effectively solved by using a standard inverse iteration or subspace iteration method. The recursive use of the Newton method employing the Wittrick–Williams algorithm to guide and guard each Newton correction gives secure second order convergence on both natural frequencies and mode vectors. The second order mode accuracy is a major advantage over earlier transcendental eigenvalue solution methods, which typically give modes of much lower accuracy than that of the natural frequencies. The excellent performance of the method is demonstrated by numerical examples, including some demanding problems, e.g. with coincident natural frequencies, with rigid body motions and large‐scale structures. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.640</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; dynamic stiffness matrix ; Dynamics ; Eigenvalues ; Mathematical analysis ; Mathematical models ; natural frequencies ; Newton's method ; Resonant frequency ; Rigid-body dynamics ; second order convergence ; Vibration mode ; vibration modes ; Wittrick-Williams algorithm</subject><ispartof>International journal for numerical methods in engineering, 2003-03, Vol.56 (12), p.1795-1814</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2950-73d9f337466e8df1bd5633694d37bc311dc967db279042a293982966ed52c1ae3</citedby><cites>FETCH-LOGICAL-c2950-73d9f337466e8df1bd5633694d37bc311dc967db279042a293982966ed52c1ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.640$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.640$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yuan, Si</creatorcontrib><creatorcontrib>Ye, Kangsheng</creatorcontrib><creatorcontrib>Williams, Fred W.</creatorcontrib><creatorcontrib>Kennedy, David</creatorcontrib><title>Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>When exact dynamic stiffness matrices are used to compute natural frequencies and vibration modes for skeletal and certain other structures, a challenging transcendental eigenvalue problem results. The present paper presents a newly developed, mathematically elegant and computationally efficient method for accurate and reliable computation of both natural frequencies and vibration modes. The method can also be applied to buckling problems. The transcendental eigenvalue problem is first reduced to a generalized linear eigenvalue problem by using Newton's method in the vicinity of an exact natural frequency identified by the Wittrick–Williams algorithm. Then the generalized linear eigenvalue problem is effectively solved by using a standard inverse iteration or subspace iteration method. The recursive use of the Newton method employing the Wittrick–Williams algorithm to guide and guard each Newton correction gives secure second order convergence on both natural frequencies and mode vectors. The second order mode accuracy is a major advantage over earlier transcendental eigenvalue solution methods, which typically give modes of much lower accuracy than that of the natural frequencies. The excellent performance of the method is demonstrated by numerical examples, including some demanding problems, e.g. with coincident natural frequencies, with rigid body motions and large‐scale structures. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>dynamic stiffness matrix</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>natural frequencies</subject><subject>Newton's method</subject><subject>Resonant frequency</subject><subject>Rigid-body dynamics</subject><subject>second order convergence</subject><subject>Vibration mode</subject><subject>vibration modes</subject><subject>Wittrick-Williams algorithm</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp10E1P3DAQBmCraqVuKeIv-AZSlcUfSRwfKwTbSgusVkUcLa89AdPEAU-ydP99XQX1xmlGmmdGo5eQE86WnDFxHntY1iX7QBacaVUwwdRHssgTXVS64Z_JF8QnxjivmFyQly24KWHYA0VwQ_R0SB4Sze0e0gNEB7SH8XHwtB0SjXacku1om-BlysMASG1e6gefu9dHiHTCEB-oP0TbB0dxDG0bAZH2dkzBAX4ln1rbIRy_1SNyd3X56-JHsb5d_bz4vi6c0BUrlPS6lVKVdQ2Nb_nOV7WUtS69VDsnOfdO18rvhNKsFFZoqRuhM_aVcNyCPCJn893nNORfcTR9QAddZyMMExrOGsF1qWWT6elMXRoQE7TmOYXepkNG5l-oJodqcqhZfpvla-jg8B4zN9eXsy5mHXCEP_-1Tb9NraSqzP3Nyqy322a7qTZmI_8CsquIlg</recordid><startdate>20030328</startdate><enddate>20030328</enddate><creator>Yuan, Si</creator><creator>Ye, Kangsheng</creator><creator>Williams, Fred W.</creator><creator>Kennedy, David</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030328</creationdate><title>Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices</title><author>Yuan, Si ; Ye, Kangsheng ; Williams, Fred W. ; Kennedy, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2950-73d9f337466e8df1bd5633694d37bc311dc967db279042a293982966ed52c1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>dynamic stiffness matrix</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>natural frequencies</topic><topic>Newton's method</topic><topic>Resonant frequency</topic><topic>Rigid-body dynamics</topic><topic>second order convergence</topic><topic>Vibration mode</topic><topic>vibration modes</topic><topic>Wittrick-Williams algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Si</creatorcontrib><creatorcontrib>Ye, Kangsheng</creatorcontrib><creatorcontrib>Williams, Fred W.</creatorcontrib><creatorcontrib>Kennedy, David</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Si</au><au>Ye, Kangsheng</au><au>Williams, Fred W.</au><au>Kennedy, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2003-03-28</date><risdate>2003</risdate><volume>56</volume><issue>12</issue><spage>1795</spage><epage>1814</epage><pages>1795-1814</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>When exact dynamic stiffness matrices are used to compute natural frequencies and vibration modes for skeletal and certain other structures, a challenging transcendental eigenvalue problem results. The present paper presents a newly developed, mathematically elegant and computationally efficient method for accurate and reliable computation of both natural frequencies and vibration modes. The method can also be applied to buckling problems. The transcendental eigenvalue problem is first reduced to a generalized linear eigenvalue problem by using Newton's method in the vicinity of an exact natural frequency identified by the Wittrick–Williams algorithm. Then the generalized linear eigenvalue problem is effectively solved by using a standard inverse iteration or subspace iteration method. The recursive use of the Newton method employing the Wittrick–Williams algorithm to guide and guard each Newton correction gives secure second order convergence on both natural frequencies and mode vectors. The second order mode accuracy is a major advantage over earlier transcendental eigenvalue solution methods, which typically give modes of much lower accuracy than that of the natural frequencies. The excellent performance of the method is demonstrated by numerical examples, including some demanding problems, e.g. with coincident natural frequencies, with rigid body motions and large‐scale structures. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.640</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2003-03, Vol.56 (12), p.1795-1814 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082194938 |
source | Wiley Journals |
subjects | Algorithms dynamic stiffness matrix Dynamics Eigenvalues Mathematical analysis Mathematical models natural frequencies Newton's method Resonant frequency Rigid-body dynamics second order convergence Vibration mode vibration modes Wittrick-Williams algorithm |
title | Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20second%20order%20convergence%20method%20for%20natural%20frequencies%20and%20modes%20when%20using%20dynamic%20stiffness%20matrices&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Yuan,%20Si&rft.date=2003-03-28&rft.volume=56&rft.issue=12&rft.spage=1795&rft.epage=1814&rft.pages=1795-1814&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.640&rft_dat=%3Cproquest_cross%3E1082194938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082194938&rft_id=info:pmid/&rfr_iscdi=true |