The authors respond to "structural equation models and epidemiologic analysis"

Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 2012-10, Vol.176 (7), p.613-614
Hauptverfasser: Arlinghaus, Anna, Lombardi, David A, Willetts, Joanna L, Folkard, Simon, Christiani, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 7
container_start_page 613
container_title American journal of epidemiology
container_volume 176
creator Arlinghaus, Anna
Lombardi, David A
Willetts, Joanna L
Folkard, Simon
Christiani, David C
description Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.
doi_str_mv 10.1093/aje/kws218
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1081434217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807024081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</originalsourceid><addsrcrecordid>eNpdkF9LwzAUR4Mobk5f_ABS5osIdblJk7aPMvwHQ1_mc0nTW9fZLl3SIPv2RjZ98OnC5XD4cQi5BHoHNOcztcbZ55djkB2RMSSpjCUT8piMKaUszplkI3Lm3JpSgFzQUzJiLBdSgBiT1-UKI-WHlbEusuh6s6miwURTN1ivB29VG-HWq6Exm6gzFbYuUgHBvqmwa0xrPhodPqrducZNz8lJrVqHF4c7Ie-PD8v5c7x4e3qZ3y9izQUMcV3ymuqUVxJRsbBYos5FKWtRVVzzFISEkmelDpPzLM0SqCkVAvJEylQj5xNys_f21mw9uqHoGqexbdUGjXcF0AwSnjBIA3r9D10bb8PgQAHLeCgIeaBu95S2xjmLddHbplN2F1TFT-UiVC72lQN8dVD6ssPqD_3Nyr8B8V537A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1128309319</pqid></control><display><type>article</type><title>The authors respond to "structural equation models and epidemiologic analysis"</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Arlinghaus, Anna ; Lombardi, David A ; Willetts, Joanna L ; Folkard, Simon ; Christiani, David C</creator><creatorcontrib>Arlinghaus, Anna ; Lombardi, David A ; Willetts, Joanna L ; Folkard, Simon ; Christiani, David C</creatorcontrib><description>Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kws218</identifier><identifier>PMID: 22956515</identifier><language>eng</language><publisher>United States: Oxford Publishing Limited (England)</publisher><subject>Epidemiology ; Fatigue - complications ; Female ; Humans ; Male ; Mathematical models ; Models, Statistical ; Multivariate analysis ; Occupational Injuries - etiology ; Regression analysis ; Sleep Deprivation - complications ; Work Schedule Tolerance ; Workload</subject><ispartof>American journal of epidemiology, 2012-10, Vol.176 (7), p.613-614</ispartof><rights>Copyright Oxford Publishing Limited(England) Oct 1, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</citedby><cites>FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22956515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arlinghaus, Anna</creatorcontrib><creatorcontrib>Lombardi, David A</creatorcontrib><creatorcontrib>Willetts, Joanna L</creatorcontrib><creatorcontrib>Folkard, Simon</creatorcontrib><creatorcontrib>Christiani, David C</creatorcontrib><title>The authors respond to "structural equation models and epidemiologic analysis"</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.</description><subject>Epidemiology</subject><subject>Fatigue - complications</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Occupational Injuries - etiology</subject><subject>Regression analysis</subject><subject>Sleep Deprivation - complications</subject><subject>Work Schedule Tolerance</subject><subject>Workload</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF9LwzAUR4Mobk5f_ABS5osIdblJk7aPMvwHQ1_mc0nTW9fZLl3SIPv2RjZ98OnC5XD4cQi5BHoHNOcztcbZ55djkB2RMSSpjCUT8piMKaUszplkI3Lm3JpSgFzQUzJiLBdSgBiT1-UKI-WHlbEusuh6s6miwURTN1ivB29VG-HWq6Exm6gzFbYuUgHBvqmwa0xrPhodPqrducZNz8lJrVqHF4c7Ie-PD8v5c7x4e3qZ3y9izQUMcV3ymuqUVxJRsbBYos5FKWtRVVzzFISEkmelDpPzLM0SqCkVAvJEylQj5xNys_f21mw9uqHoGqexbdUGjXcF0AwSnjBIA3r9D10bb8PgQAHLeCgIeaBu95S2xjmLddHbplN2F1TFT-UiVC72lQN8dVD6ssPqD_3Nyr8B8V537A</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Arlinghaus, Anna</creator><creator>Lombardi, David A</creator><creator>Willetts, Joanna L</creator><creator>Folkard, Simon</creator><creator>Christiani, David C</creator><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>The authors respond to "structural equation models and epidemiologic analysis"</title><author>Arlinghaus, Anna ; Lombardi, David A ; Willetts, Joanna L ; Folkard, Simon ; Christiani, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Epidemiology</topic><topic>Fatigue - complications</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Occupational Injuries - etiology</topic><topic>Regression analysis</topic><topic>Sleep Deprivation - complications</topic><topic>Work Schedule Tolerance</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arlinghaus, Anna</creatorcontrib><creatorcontrib>Lombardi, David A</creatorcontrib><creatorcontrib>Willetts, Joanna L</creatorcontrib><creatorcontrib>Folkard, Simon</creatorcontrib><creatorcontrib>Christiani, David C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arlinghaus, Anna</au><au>Lombardi, David A</au><au>Willetts, Joanna L</au><au>Folkard, Simon</au><au>Christiani, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The authors respond to "structural equation models and epidemiologic analysis"</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>176</volume><issue>7</issue><spage>613</spage><epage>614</epage><pages>613-614</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.</abstract><cop>United States</cop><pub>Oxford Publishing Limited (England)</pub><pmid>22956515</pmid><doi>10.1093/aje/kws218</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2012-10, Vol.176 (7), p.613-614
issn 0002-9262
1476-6256
language eng
recordid cdi_proquest_miscellaneous_1081434217
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Epidemiology
Fatigue - complications
Female
Humans
Male
Mathematical models
Models, Statistical
Multivariate analysis
Occupational Injuries - etiology
Regression analysis
Sleep Deprivation - complications
Work Schedule Tolerance
Workload
title The authors respond to "structural equation models and epidemiologic analysis"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20authors%20respond%20to%20%22structural%20equation%20models%20and%20epidemiologic%20analysis%22&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Arlinghaus,%20Anna&rft.date=2012-10-01&rft.volume=176&rft.issue=7&rft.spage=613&rft.epage=614&rft.pages=613-614&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kws218&rft_dat=%3Cproquest_cross%3E2807024081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1128309319&rft_id=info:pmid/22956515&rfr_iscdi=true