The authors respond to "structural equation models and epidemiologic analysis"
Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, ther...
Gespeichert in:
Veröffentlicht in: | American journal of epidemiology 2012-10, Vol.176 (7), p.613-614 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 7 |
container_start_page | 613 |
container_title | American journal of epidemiology |
container_volume | 176 |
creator | Arlinghaus, Anna Lombardi, David A Willetts, Joanna L Folkard, Simon Christiani, David C |
description | Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model. |
doi_str_mv | 10.1093/aje/kws218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1081434217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807024081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</originalsourceid><addsrcrecordid>eNpdkF9LwzAUR4Mobk5f_ABS5osIdblJk7aPMvwHQ1_mc0nTW9fZLl3SIPv2RjZ98OnC5XD4cQi5BHoHNOcztcbZ55djkB2RMSSpjCUT8piMKaUszplkI3Lm3JpSgFzQUzJiLBdSgBiT1-UKI-WHlbEusuh6s6miwURTN1ivB29VG-HWq6Exm6gzFbYuUgHBvqmwa0xrPhodPqrducZNz8lJrVqHF4c7Ie-PD8v5c7x4e3qZ3y9izQUMcV3ymuqUVxJRsbBYos5FKWtRVVzzFISEkmelDpPzLM0SqCkVAvJEylQj5xNys_f21mw9uqHoGqexbdUGjXcF0AwSnjBIA3r9D10bb8PgQAHLeCgIeaBu95S2xjmLddHbplN2F1TFT-UiVC72lQN8dVD6ssPqD_3Nyr8B8V537A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1128309319</pqid></control><display><type>article</type><title>The authors respond to "structural equation models and epidemiologic analysis"</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Arlinghaus, Anna ; Lombardi, David A ; Willetts, Joanna L ; Folkard, Simon ; Christiani, David C</creator><creatorcontrib>Arlinghaus, Anna ; Lombardi, David A ; Willetts, Joanna L ; Folkard, Simon ; Christiani, David C</creatorcontrib><description>Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kws218</identifier><identifier>PMID: 22956515</identifier><language>eng</language><publisher>United States: Oxford Publishing Limited (England)</publisher><subject>Epidemiology ; Fatigue - complications ; Female ; Humans ; Male ; Mathematical models ; Models, Statistical ; Multivariate analysis ; Occupational Injuries - etiology ; Regression analysis ; Sleep Deprivation - complications ; Work Schedule Tolerance ; Workload</subject><ispartof>American journal of epidemiology, 2012-10, Vol.176 (7), p.613-614</ispartof><rights>Copyright Oxford Publishing Limited(England) Oct 1, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</citedby><cites>FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22956515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arlinghaus, Anna</creatorcontrib><creatorcontrib>Lombardi, David A</creatorcontrib><creatorcontrib>Willetts, Joanna L</creatorcontrib><creatorcontrib>Folkard, Simon</creatorcontrib><creatorcontrib>Christiani, David C</creatorcontrib><title>The authors respond to "structural equation models and epidemiologic analysis"</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.</description><subject>Epidemiology</subject><subject>Fatigue - complications</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Occupational Injuries - etiology</subject><subject>Regression analysis</subject><subject>Sleep Deprivation - complications</subject><subject>Work Schedule Tolerance</subject><subject>Workload</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF9LwzAUR4Mobk5f_ABS5osIdblJk7aPMvwHQ1_mc0nTW9fZLl3SIPv2RjZ98OnC5XD4cQi5BHoHNOcztcbZ55djkB2RMSSpjCUT8piMKaUszplkI3Lm3JpSgFzQUzJiLBdSgBiT1-UKI-WHlbEusuh6s6miwURTN1ivB29VG-HWq6Exm6gzFbYuUgHBvqmwa0xrPhodPqrducZNz8lJrVqHF4c7Ie-PD8v5c7x4e3qZ3y9izQUMcV3ymuqUVxJRsbBYos5FKWtRVVzzFISEkmelDpPzLM0SqCkVAvJEylQj5xNys_f21mw9uqHoGqexbdUGjXcF0AwSnjBIA3r9D10bb8PgQAHLeCgIeaBu95S2xjmLddHbplN2F1TFT-UiVC72lQN8dVD6ssPqD_3Nyr8B8V537A</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Arlinghaus, Anna</creator><creator>Lombardi, David A</creator><creator>Willetts, Joanna L</creator><creator>Folkard, Simon</creator><creator>Christiani, David C</creator><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>The authors respond to "structural equation models and epidemiologic analysis"</title><author>Arlinghaus, Anna ; Lombardi, David A ; Willetts, Joanna L ; Folkard, Simon ; Christiani, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-fb3f0c73d6eea24766ec95b6f5dd3c371561b38bc001987841f0055194667ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Epidemiology</topic><topic>Fatigue - complications</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Occupational Injuries - etiology</topic><topic>Regression analysis</topic><topic>Sleep Deprivation - complications</topic><topic>Work Schedule Tolerance</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arlinghaus, Anna</creatorcontrib><creatorcontrib>Lombardi, David A</creatorcontrib><creatorcontrib>Willetts, Joanna L</creatorcontrib><creatorcontrib>Folkard, Simon</creatorcontrib><creatorcontrib>Christiani, David C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arlinghaus, Anna</au><au>Lombardi, David A</au><au>Willetts, Joanna L</au><au>Folkard, Simon</au><au>Christiani, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The authors respond to "structural equation models and epidemiologic analysis"</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>176</volume><issue>7</issue><spage>613</spage><epage>614</epage><pages>613-614</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Arlinghaus et al comment on Dr. VanderWeele's insightful commentary on their article on the use of structural equation modeling (SEM) as a tool for epidemiologic analysis. While they agree that it is important to weigh the benefits of SEM against the limitations posed by broad assumptions, there is general consensus that an underlying theory about mechanisms is required, and ideally a model should be specified before the data are collected. VanderWeele states that oftentimes models are constructed on the basis of what researchers feel are important pathways and recommends including more pathways rather than fewer, leading to conservative control for confounding fit. While they acknowledge the need to control for confounding, commonly several models are in fact tested concurrently using SEM to critically evaluate the alternative models and to avoid the pitfall of simply confirming the researcher's preferred model.</abstract><cop>United States</cop><pub>Oxford Publishing Limited (England)</pub><pmid>22956515</pmid><doi>10.1093/aje/kws218</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 2012-10, Vol.176 (7), p.613-614 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1081434217 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Epidemiology Fatigue - complications Female Humans Male Mathematical models Models, Statistical Multivariate analysis Occupational Injuries - etiology Regression analysis Sleep Deprivation - complications Work Schedule Tolerance Workload |
title | The authors respond to "structural equation models and epidemiologic analysis" |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20authors%20respond%20to%20%22structural%20equation%20models%20and%20epidemiologic%20analysis%22&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Arlinghaus,%20Anna&rft.date=2012-10-01&rft.volume=176&rft.issue=7&rft.spage=613&rft.epage=614&rft.pages=613-614&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kws218&rft_dat=%3Cproquest_cross%3E2807024081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1128309319&rft_id=info:pmid/22956515&rfr_iscdi=true |