Better alloys with quantum design
Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on o...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-09, Vol.109 (12), p.125506-125506, Article 125506 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125506 |
---|---|
container_issue | 12 |
container_start_page | 125506 |
container_title | Physical review letters |
container_volume | 109 |
creator | Jones, Travis E Eberhart, Mark E Imlay, Scott Mackey, Craig Olson, Greg B |
description | Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified. |
doi_str_mv | 10.1103/PhysRevLett.109.125506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080639315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080639315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbK3-hRJ3blLvzWReSy31AQVFdB0mkxkbSZo2M1Hy742kiqsLh--cCx8hc4QFItDr503vX-zn2oawQFALTBgDfkSmCELFAjE9JlMAirECEBNy5v0HAGDC5SmZJBSAKY5Tcnk7LNg20lXV9D76KsMm2nd6G7o6Kqwv37fn5MTpytuLw52Rt7vV6_IhXj_dPy5v1rGhTIW44FxKx7k2ikmR5lwKMEYWae6EYqlOlBVO5VIrlwCjCTiKsrB56pwpKBN0Rq7G3V3b7DvrQ1aX3tiq0lvbdD5DkMCposgGlI-oaRvvW-uyXVvWuu0HKPvRk_3TM2QqG_UMxfnhR5fXtvir_fqg3w30Yp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080639315</pqid></control><display><type>article</type><title>Better alloys with quantum design</title><source>American Physical Society Journals</source><creator>Jones, Travis E ; Eberhart, Mark E ; Imlay, Scott ; Mackey, Craig ; Olson, Greg B</creator><creatorcontrib>Jones, Travis E ; Eberhart, Mark E ; Imlay, Scott ; Mackey, Craig ; Olson, Greg B</creatorcontrib><description>Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.125506</identifier><identifier>PMID: 23005961</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-09, Vol.109 (12), p.125506-125506, Article 125506</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</citedby><cites>FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23005961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Travis E</creatorcontrib><creatorcontrib>Eberhart, Mark E</creatorcontrib><creatorcontrib>Imlay, Scott</creatorcontrib><creatorcontrib>Mackey, Craig</creatorcontrib><creatorcontrib>Olson, Greg B</creatorcontrib><title>Better alloys with quantum design</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRbK3-hRJ3blLvzWReSy31AQVFdB0mkxkbSZo2M1Hy742kiqsLh--cCx8hc4QFItDr503vX-zn2oawQFALTBgDfkSmCELFAjE9JlMAirECEBNy5v0HAGDC5SmZJBSAKY5Tcnk7LNg20lXV9D76KsMm2nd6G7o6Kqwv37fn5MTpytuLw52Rt7vV6_IhXj_dPy5v1rGhTIW44FxKx7k2ikmR5lwKMEYWae6EYqlOlBVO5VIrlwCjCTiKsrB56pwpKBN0Rq7G3V3b7DvrQ1aX3tiq0lvbdD5DkMCposgGlI-oaRvvW-uyXVvWuu0HKPvRk_3TM2QqG_UMxfnhR5fXtvir_fqg3w30Yp4</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>Jones, Travis E</creator><creator>Eberhart, Mark E</creator><creator>Imlay, Scott</creator><creator>Mackey, Craig</creator><creator>Olson, Greg B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120921</creationdate><title>Better alloys with quantum design</title><author>Jones, Travis E ; Eberhart, Mark E ; Imlay, Scott ; Mackey, Craig ; Olson, Greg B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Travis E</creatorcontrib><creatorcontrib>Eberhart, Mark E</creatorcontrib><creatorcontrib>Imlay, Scott</creatorcontrib><creatorcontrib>Mackey, Craig</creatorcontrib><creatorcontrib>Olson, Greg B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Travis E</au><au>Eberhart, Mark E</au><au>Imlay, Scott</au><au>Mackey, Craig</au><au>Olson, Greg B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Better alloys with quantum design</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-09-21</date><risdate>2012</risdate><volume>109</volume><issue>12</issue><spage>125506</spage><epage>125506</epage><pages>125506-125506</pages><artnum>125506</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.</abstract><cop>United States</cop><pmid>23005961</pmid><doi>10.1103/PhysRevLett.109.125506</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-09, Vol.109 (12), p.125506-125506, Article 125506 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1080639315 |
source | American Physical Society Journals |
title | Better alloys with quantum design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Better%20alloys%20with%20quantum%20design&rft.jtitle=Physical%20review%20letters&rft.au=Jones,%20Travis%20E&rft.date=2012-09-21&rft.volume=109&rft.issue=12&rft.spage=125506&rft.epage=125506&rft.pages=125506-125506&rft.artnum=125506&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.125506&rft_dat=%3Cproquest_cross%3E1080639315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080639315&rft_id=info:pmid/23005961&rfr_iscdi=true |