Better alloys with quantum design

Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-09, Vol.109 (12), p.125506-125506, Article 125506
Hauptverfasser: Jones, Travis E, Eberhart, Mark E, Imlay, Scott, Mackey, Craig, Olson, Greg B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125506
container_issue 12
container_start_page 125506
container_title Physical review letters
container_volume 109
creator Jones, Travis E
Eberhart, Mark E
Imlay, Scott
Mackey, Craig
Olson, Greg B
description Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.
doi_str_mv 10.1103/PhysRevLett.109.125506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080639315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080639315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbK3-hRJ3blLvzWReSy31AQVFdB0mkxkbSZo2M1Hy742kiqsLh--cCx8hc4QFItDr503vX-zn2oawQFALTBgDfkSmCELFAjE9JlMAirECEBNy5v0HAGDC5SmZJBSAKY5Tcnk7LNg20lXV9D76KsMm2nd6G7o6Kqwv37fn5MTpytuLw52Rt7vV6_IhXj_dPy5v1rGhTIW44FxKx7k2ikmR5lwKMEYWae6EYqlOlBVO5VIrlwCjCTiKsrB56pwpKBN0Rq7G3V3b7DvrQ1aX3tiq0lvbdD5DkMCposgGlI-oaRvvW-uyXVvWuu0HKPvRk_3TM2QqG_UMxfnhR5fXtvir_fqg3w30Yp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080639315</pqid></control><display><type>article</type><title>Better alloys with quantum design</title><source>American Physical Society Journals</source><creator>Jones, Travis E ; Eberhart, Mark E ; Imlay, Scott ; Mackey, Craig ; Olson, Greg B</creator><creatorcontrib>Jones, Travis E ; Eberhart, Mark E ; Imlay, Scott ; Mackey, Craig ; Olson, Greg B</creatorcontrib><description>Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.125506</identifier><identifier>PMID: 23005961</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-09, Vol.109 (12), p.125506-125506, Article 125506</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</citedby><cites>FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23005961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Travis E</creatorcontrib><creatorcontrib>Eberhart, Mark E</creatorcontrib><creatorcontrib>Imlay, Scott</creatorcontrib><creatorcontrib>Mackey, Craig</creatorcontrib><creatorcontrib>Olson, Greg B</creatorcontrib><title>Better alloys with quantum design</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRbK3-hRJ3blLvzWReSy31AQVFdB0mkxkbSZo2M1Hy742kiqsLh--cCx8hc4QFItDr503vX-zn2oawQFALTBgDfkSmCELFAjE9JlMAirECEBNy5v0HAGDC5SmZJBSAKY5Tcnk7LNg20lXV9D76KsMm2nd6G7o6Kqwv37fn5MTpytuLw52Rt7vV6_IhXj_dPy5v1rGhTIW44FxKx7k2ikmR5lwKMEYWae6EYqlOlBVO5VIrlwCjCTiKsrB56pwpKBN0Rq7G3V3b7DvrQ1aX3tiq0lvbdD5DkMCposgGlI-oaRvvW-uyXVvWuu0HKPvRk_3TM2QqG_UMxfnhR5fXtvir_fqg3w30Yp4</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>Jones, Travis E</creator><creator>Eberhart, Mark E</creator><creator>Imlay, Scott</creator><creator>Mackey, Craig</creator><creator>Olson, Greg B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120921</creationdate><title>Better alloys with quantum design</title><author>Jones, Travis E ; Eberhart, Mark E ; Imlay, Scott ; Mackey, Craig ; Olson, Greg B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d6688f66ac95874b6870cc8d4bf7954a29e7f9b8a9f205320f318deb4ffcd3573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Travis E</creatorcontrib><creatorcontrib>Eberhart, Mark E</creatorcontrib><creatorcontrib>Imlay, Scott</creatorcontrib><creatorcontrib>Mackey, Craig</creatorcontrib><creatorcontrib>Olson, Greg B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Travis E</au><au>Eberhart, Mark E</au><au>Imlay, Scott</au><au>Mackey, Craig</au><au>Olson, Greg B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Better alloys with quantum design</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-09-21</date><risdate>2012</risdate><volume>109</volume><issue>12</issue><spage>125506</spage><epage>125506</epage><pages>125506-125506</pages><artnum>125506</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Alloy discovery and development is slowed by trial and error methods used to identify beneficial alloying elements. This fact has led to suggestions that integrating quantum theory and modeling with traditional experimental approaches might accelerate the pace of alloy discovery. We report here on one such effort, using advances in first principles computation along with an evolving theory that allows for the partitioning of charge density into chemically meaningful structures, alloying elements that improve the adhesive properties of interfaces common to high strength steels have been identified.</abstract><cop>United States</cop><pmid>23005961</pmid><doi>10.1103/PhysRevLett.109.125506</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-09, Vol.109 (12), p.125506-125506, Article 125506
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1080639315
source American Physical Society Journals
title Better alloys with quantum design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Better%20alloys%20with%20quantum%20design&rft.jtitle=Physical%20review%20letters&rft.au=Jones,%20Travis%20E&rft.date=2012-09-21&rft.volume=109&rft.issue=12&rft.spage=125506&rft.epage=125506&rft.pages=125506-125506&rft.artnum=125506&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.125506&rft_dat=%3Cproquest_cross%3E1080639315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080639315&rft_id=info:pmid/23005961&rfr_iscdi=true