Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation,...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-08, Vol.109 (9), p.095705-095705, Article 095705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 095705 |
---|---|
container_issue | 9 |
container_start_page | 095705 |
container_title | Physical review letters |
container_volume | 109 |
creator | Sengupta, Shiladitya Karmakar, Smarajit Dasgupta, Chandan Sastry, Srikanth |
description | The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study. |
doi_str_mv | 10.1103/physrevlett.109.095705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080636403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080636403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-2006ac376db4e9832cf986e57c9794425ba4bef2246d0a0042572ac84a9743093</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlb_QsnRg6mTj002x1K0CgWL6HnJ7mbbyH60yW6l_95Iq6cZhud9Bx6EphRmlAJ_3G2PwdtDbft-RkHPQCcKkgs0pqA0UZSKSzQG4JRoADVCNyF8AQBlMr1GI8YBWJqoMVrPS9OQpcvzgL2tTe-6Fledx5vahEDi1rh2g2u3H1wZsGtx_9094H7rrX3Api0jPHhcusa2IWbDLbqqTB3s3XlO0Ofz08fihazelq-L-YoUgkNPGIA0BVeyzIXVKWdFpVNpE1VopYVgSW5EbivGhCzBAMSLYqZIhdEqFmg-Qfen3p3v9oMNfda4UNi6Nq3thpBRSEFyKYBHVJ7QwnchWquynXeN8ccIZb82s3W0-W4Pq2gz3nR2shmD0_OPIW9s-R_708d_AHJVcsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080636403</pqid></control><display><type>article</type><title>Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions</title><source>American Physical Society</source><creator>Sengupta, Shiladitya ; Karmakar, Smarajit ; Dasgupta, Chandan ; Sastry, Srikanth</creator><creatorcontrib>Sengupta, Shiladitya ; Karmakar, Smarajit ; Dasgupta, Chandan ; Sastry, Srikanth</creatorcontrib><description>The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.109.095705</identifier><identifier>PMID: 23002857</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-08, Vol.109 (9), p.095705-095705, Article 095705</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-2006ac376db4e9832cf986e57c9794425ba4bef2246d0a0042572ac84a9743093</citedby><cites>FETCH-LOGICAL-c430t-2006ac376db4e9832cf986e57c9794425ba4bef2246d0a0042572ac84a9743093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23002857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Shiladitya</creatorcontrib><creatorcontrib>Karmakar, Smarajit</creatorcontrib><creatorcontrib>Dasgupta, Chandan</creatorcontrib><creatorcontrib>Sastry, Srikanth</creatorcontrib><title>Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlb_QsnRg6mTj002x1K0CgWL6HnJ7mbbyH60yW6l_95Iq6cZhud9Bx6EphRmlAJ_3G2PwdtDbft-RkHPQCcKkgs0pqA0UZSKSzQG4JRoADVCNyF8AQBlMr1GI8YBWJqoMVrPS9OQpcvzgL2tTe-6Fledx5vahEDi1rh2g2u3H1wZsGtx_9094H7rrX3Api0jPHhcusa2IWbDLbqqTB3s3XlO0Ofz08fihazelq-L-YoUgkNPGIA0BVeyzIXVKWdFpVNpE1VopYVgSW5EbivGhCzBAMSLYqZIhdEqFmg-Qfen3p3v9oMNfda4UNi6Nq3thpBRSEFyKYBHVJ7QwnchWquynXeN8ccIZb82s3W0-W4Pq2gz3nR2shmD0_OPIW9s-R_708d_AHJVcsA</recordid><startdate>20120829</startdate><enddate>20120829</enddate><creator>Sengupta, Shiladitya</creator><creator>Karmakar, Smarajit</creator><creator>Dasgupta, Chandan</creator><creator>Sastry, Srikanth</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120829</creationdate><title>Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions</title><author>Sengupta, Shiladitya ; Karmakar, Smarajit ; Dasgupta, Chandan ; Sastry, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-2006ac376db4e9832cf986e57c9794425ba4bef2246d0a0042572ac84a9743093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Shiladitya</creatorcontrib><creatorcontrib>Karmakar, Smarajit</creatorcontrib><creatorcontrib>Dasgupta, Chandan</creatorcontrib><creatorcontrib>Sastry, Srikanth</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Shiladitya</au><au>Karmakar, Smarajit</au><au>Dasgupta, Chandan</au><au>Sastry, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-08-29</date><risdate>2012</risdate><volume>109</volume><issue>9</issue><spage>095705</spage><epage>095705</epage><pages>095705-095705</pages><artnum>095705</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.</abstract><cop>United States</cop><pmid>23002857</pmid><doi>10.1103/physrevlett.109.095705</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-08, Vol.109 (9), p.095705-095705, Article 095705 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1080636403 |
source | American Physical Society |
title | Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adam-Gibbs%20relation%20for%20glass-forming%20liquids%20in%20two,%20three,%20and%20four%20dimensions&rft.jtitle=Physical%20review%20letters&rft.au=Sengupta,%20Shiladitya&rft.date=2012-08-29&rft.volume=109&rft.issue=9&rft.spage=095705&rft.epage=095705&rft.pages=095705-095705&rft.artnum=095705&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.109.095705&rft_dat=%3Cproquest_cross%3E1080636403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080636403&rft_id=info:pmid/23002857&rfr_iscdi=true |