Adjoint method provides phase response functions for delay-induced oscillations

Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-07, Vol.109 (4), p.044101-044101, Article 044101
Hauptverfasser: Kotani, Kiyoshi, Yamaguchi, Ikuhiro, Ogawa, Yutaro, Jimbo, Yasuhiko, Nakao, Hiroya, Ermentrout, G Bard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044101
container_issue 4
container_start_page 044101
container_title Physical review letters
container_volume 109
creator Kotani, Kiyoshi
Yamaguchi, Ikuhiro
Ogawa, Yutaro
Jimbo, Yasuhiko
Nakao, Hiroya
Ermentrout, G Bard
description Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.
doi_str_mv 10.1103/physrevlett.109.044101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080614803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080614803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwC1WWbFJmbMeJl1XFS6pUhGAduX6oqZI4xEml_j2GFlZ3NHPvzOgQMkdYIAJ76HbH0NtDbYdhgSAXwDkCXpApQi7THJFfkikAw1QC5BNyE8IeAJCK4ppMKAMQIGFKNkuz91U7JI0ddt4kXe8PlbEh6XYq2KS3ofNtLNzY6qGKZeJ8nxhbq2NatWbU1iQ-6Kqu1e_4llw5VQd7d9YZ-Xx6_Fi9pOvN8-tquU41F3JIt2LrwMkMKZWOUpdzJzKnDaCymhYUGWYoC844aEGjZEYbZ1SmC20yZ9iM3J_2xoe_RhuGsqmCtvGN1voxlAgFCOQFsGgVJ6vufYjQXNn1VaP6YzSVPzDLtwjz3R7WEWbsyfIEMwbn5xvjtrHmP_ZHj30DByd0zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080614803</pqid></control><display><type>article</type><title>Adjoint method provides phase response functions for delay-induced oscillations</title><source>American Physical Society Journals</source><creator>Kotani, Kiyoshi ; Yamaguchi, Ikuhiro ; Ogawa, Yutaro ; Jimbo, Yasuhiko ; Nakao, Hiroya ; Ermentrout, G Bard</creator><creatorcontrib>Kotani, Kiyoshi ; Yamaguchi, Ikuhiro ; Ogawa, Yutaro ; Jimbo, Yasuhiko ; Nakao, Hiroya ; Ermentrout, G Bard</creatorcontrib><description>Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.109.044101</identifier><identifier>PMID: 23006090</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-07, Vol.109 (4), p.044101-044101, Article 044101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</citedby><cites>FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23006090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Yamaguchi, Ikuhiro</creatorcontrib><creatorcontrib>Ogawa, Yutaro</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Nakao, Hiroya</creatorcontrib><creatorcontrib>Ermentrout, G Bard</creatorcontrib><title>Adjoint method provides phase response functions for delay-induced oscillations</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqXwC1WWbFJmbMeJl1XFS6pUhGAduX6oqZI4xEml_j2GFlZ3NHPvzOgQMkdYIAJ76HbH0NtDbYdhgSAXwDkCXpApQi7THJFfkikAw1QC5BNyE8IeAJCK4ppMKAMQIGFKNkuz91U7JI0ddt4kXe8PlbEh6XYq2KS3ofNtLNzY6qGKZeJ8nxhbq2NatWbU1iQ-6Kqu1e_4llw5VQd7d9YZ-Xx6_Fi9pOvN8-tquU41F3JIt2LrwMkMKZWOUpdzJzKnDaCymhYUGWYoC844aEGjZEYbZ1SmC20yZ9iM3J_2xoe_RhuGsqmCtvGN1voxlAgFCOQFsGgVJ6vufYjQXNn1VaP6YzSVPzDLtwjz3R7WEWbsyfIEMwbn5xvjtrHmP_ZHj30DByd0zA</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Kotani, Kiyoshi</creator><creator>Yamaguchi, Ikuhiro</creator><creator>Ogawa, Yutaro</creator><creator>Jimbo, Yasuhiko</creator><creator>Nakao, Hiroya</creator><creator>Ermentrout, G Bard</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201207</creationdate><title>Adjoint method provides phase response functions for delay-induced oscillations</title><author>Kotani, Kiyoshi ; Yamaguchi, Ikuhiro ; Ogawa, Yutaro ; Jimbo, Yasuhiko ; Nakao, Hiroya ; Ermentrout, G Bard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Yamaguchi, Ikuhiro</creatorcontrib><creatorcontrib>Ogawa, Yutaro</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Nakao, Hiroya</creatorcontrib><creatorcontrib>Ermentrout, G Bard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotani, Kiyoshi</au><au>Yamaguchi, Ikuhiro</au><au>Ogawa, Yutaro</au><au>Jimbo, Yasuhiko</au><au>Nakao, Hiroya</au><au>Ermentrout, G Bard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint method provides phase response functions for delay-induced oscillations</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-07</date><risdate>2012</risdate><volume>109</volume><issue>4</issue><spage>044101</spage><epage>044101</epage><pages>044101-044101</pages><artnum>044101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.</abstract><cop>United States</cop><pmid>23006090</pmid><doi>10.1103/physrevlett.109.044101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-07, Vol.109 (4), p.044101-044101, Article 044101
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1080614803
source American Physical Society Journals
title Adjoint method provides phase response functions for delay-induced oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20method%20provides%20phase%20response%20functions%20for%20delay-induced%20oscillations&rft.jtitle=Physical%20review%20letters&rft.au=Kotani,%20Kiyoshi&rft.date=2012-07&rft.volume=109&rft.issue=4&rft.spage=044101&rft.epage=044101&rft.pages=044101-044101&rft.artnum=044101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.109.044101&rft_dat=%3Cproquest_cross%3E1080614803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080614803&rft_id=info:pmid/23006090&rfr_iscdi=true