Adjoint method provides phase response functions for delay-induced oscillations
Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-07, Vol.109 (4), p.044101-044101, Article 044101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044101 |
---|---|
container_issue | 4 |
container_start_page | 044101 |
container_title | Physical review letters |
container_volume | 109 |
creator | Kotani, Kiyoshi Yamaguchi, Ikuhiro Ogawa, Yutaro Jimbo, Yasuhiko Nakao, Hiroya Ermentrout, G Bard |
description | Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior. |
doi_str_mv | 10.1103/physrevlett.109.044101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080614803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080614803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwC1WWbFJmbMeJl1XFS6pUhGAduX6oqZI4xEml_j2GFlZ3NHPvzOgQMkdYIAJ76HbH0NtDbYdhgSAXwDkCXpApQi7THJFfkikAw1QC5BNyE8IeAJCK4ppMKAMQIGFKNkuz91U7JI0ddt4kXe8PlbEh6XYq2KS3ofNtLNzY6qGKZeJ8nxhbq2NatWbU1iQ-6Kqu1e_4llw5VQd7d9YZ-Xx6_Fi9pOvN8-tquU41F3JIt2LrwMkMKZWOUpdzJzKnDaCymhYUGWYoC844aEGjZEYbZ1SmC20yZ9iM3J_2xoe_RhuGsqmCtvGN1voxlAgFCOQFsGgVJ6vufYjQXNn1VaP6YzSVPzDLtwjz3R7WEWbsyfIEMwbn5xvjtrHmP_ZHj30DByd0zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080614803</pqid></control><display><type>article</type><title>Adjoint method provides phase response functions for delay-induced oscillations</title><source>American Physical Society Journals</source><creator>Kotani, Kiyoshi ; Yamaguchi, Ikuhiro ; Ogawa, Yutaro ; Jimbo, Yasuhiko ; Nakao, Hiroya ; Ermentrout, G Bard</creator><creatorcontrib>Kotani, Kiyoshi ; Yamaguchi, Ikuhiro ; Ogawa, Yutaro ; Jimbo, Yasuhiko ; Nakao, Hiroya ; Ermentrout, G Bard</creatorcontrib><description>Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.109.044101</identifier><identifier>PMID: 23006090</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-07, Vol.109 (4), p.044101-044101, Article 044101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</citedby><cites>FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23006090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Yamaguchi, Ikuhiro</creatorcontrib><creatorcontrib>Ogawa, Yutaro</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Nakao, Hiroya</creatorcontrib><creatorcontrib>Ermentrout, G Bard</creatorcontrib><title>Adjoint method provides phase response functions for delay-induced oscillations</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqXwC1WWbFJmbMeJl1XFS6pUhGAduX6oqZI4xEml_j2GFlZ3NHPvzOgQMkdYIAJ76HbH0NtDbYdhgSAXwDkCXpApQi7THJFfkikAw1QC5BNyE8IeAJCK4ppMKAMQIGFKNkuz91U7JI0ddt4kXe8PlbEh6XYq2KS3ofNtLNzY6qGKZeJ8nxhbq2NatWbU1iQ-6Kqu1e_4llw5VQd7d9YZ-Xx6_Fi9pOvN8-tquU41F3JIt2LrwMkMKZWOUpdzJzKnDaCymhYUGWYoC844aEGjZEYbZ1SmC20yZ9iM3J_2xoe_RhuGsqmCtvGN1voxlAgFCOQFsGgVJ6vufYjQXNn1VaP6YzSVPzDLtwjz3R7WEWbsyfIEMwbn5xvjtrHmP_ZHj30DByd0zA</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Kotani, Kiyoshi</creator><creator>Yamaguchi, Ikuhiro</creator><creator>Ogawa, Yutaro</creator><creator>Jimbo, Yasuhiko</creator><creator>Nakao, Hiroya</creator><creator>Ermentrout, G Bard</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201207</creationdate><title>Adjoint method provides phase response functions for delay-induced oscillations</title><author>Kotani, Kiyoshi ; Yamaguchi, Ikuhiro ; Ogawa, Yutaro ; Jimbo, Yasuhiko ; Nakao, Hiroya ; Ermentrout, G Bard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b6bf0f951229f22f74f65fcd01aec28213151984340c624345dcdfda5c8cd5fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Yamaguchi, Ikuhiro</creatorcontrib><creatorcontrib>Ogawa, Yutaro</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Nakao, Hiroya</creatorcontrib><creatorcontrib>Ermentrout, G Bard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotani, Kiyoshi</au><au>Yamaguchi, Ikuhiro</au><au>Ogawa, Yutaro</au><au>Jimbo, Yasuhiko</au><au>Nakao, Hiroya</au><au>Ermentrout, G Bard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint method provides phase response functions for delay-induced oscillations</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-07</date><risdate>2012</risdate><volume>109</volume><issue>4</issue><spage>044101</spage><epage>044101</epage><pages>044101-044101</pages><artnum>044101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.</abstract><cop>United States</cop><pmid>23006090</pmid><doi>10.1103/physrevlett.109.044101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-07, Vol.109 (4), p.044101-044101, Article 044101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1080614803 |
source | American Physical Society Journals |
title | Adjoint method provides phase response functions for delay-induced oscillations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20method%20provides%20phase%20response%20functions%20for%20delay-induced%20oscillations&rft.jtitle=Physical%20review%20letters&rft.au=Kotani,%20Kiyoshi&rft.date=2012-07&rft.volume=109&rft.issue=4&rft.spage=044101&rft.epage=044101&rft.pages=044101-044101&rft.artnum=044101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.109.044101&rft_dat=%3Cproquest_cross%3E1080614803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080614803&rft_id=info:pmid/23006090&rfr_iscdi=true |