Characteristics of thermalization of boost-invariant plasma from holography
We report on the approach toward the hydrodynamic regime of boost-invariant N=4 super Yang-Mills plasma at strong coupling starting from various far-from-equilibrium states at τ=0. The results are obtained through a numerical solution of Einstein's equations for the dual geometries, as describe...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-05, Vol.108 (20), p.201602-201602, Article 201602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the approach toward the hydrodynamic regime of boost-invariant N=4 super Yang-Mills plasma at strong coupling starting from various far-from-equilibrium states at τ=0. The results are obtained through a numerical solution of Einstein's equations for the dual geometries, as described in detail in the companion article [M. P. Heller, R. A. Janik, and P. Witaszczyk, arXiv:1203.0755]. Despite the very rich far-from-equilibrium evolution, we find surprising regularities in the form of clear correlations between initial entropy and total produced entropy, as well as between initial entropy and the temperature at thermalization, understood as the transition to a hydrodynamic description. For 29 different initial conditions that we consider, hydrodynamics turns out to be definitely applicable for proper times larger than 0.7 in units of inverse temperature at thermalization. We observe a sizable anisotropy in the energy-momentum tensor at thermalization, which is nevertheless entirely due to hydrodynamic effects. This suggests that effective thermalization in heavy-ion collisions may occur significantly earlier than true thermalization. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.201602 |