Exciton transport in thin-film cyanine dye J-aggregates
We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an...
Gespeichert in:
Veröffentlicht in: | J. Chem. Phys 2012-07, Vol.137 (3), p.034109-034109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034109 |
---|---|
container_issue | 3 |
container_start_page | 034109 |
container_title | J. Chem. Phys |
container_volume | 137 |
creator | Valleau, Stéphanie Saikin, Semion K Yung, Man-Hong Aspuru Guzik, Alán |
description | We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an exciton on a lattice in different parameter regimes. The transition between the ballistic and diffusive regime is controlled by static and dynamic disorder. As an example, the model is applied to three cyanine dye J-aggregates: TC, TDBC, and U3. Each of the molecule-specific structure and excitation parameters are estimated using time-dependent density functional theory. The exciton diffusion coefficients are calculated and analyzed for different degrees of film disorder and are correlated to the physical properties and the structural arrangement of molecules in the aggregates. Further, exciton transport is anisotropic and dependent on the initial exciton energy. The upper-bound estimation of the exciton diffusion length in the TDBC thin-film J-aggregate is of the order of hundreds of nanometers, which is in good qualitative agreement with the diffusion length estimated from experiments. |
doi_str_mv | 10.1063/1.4732122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1074777098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1074777098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6d22ff5f2cfc45f95b20d607683ad605d3e8135784415642f64c778285d09a473</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgitbqwT8giyc9bJ18Z49S6hcFL3pe0mzSRrrZmqRg_72RVk_DwMPLzIvQFYYJBkHv8YRJSjAhR2iEQTW1FA0coxEAwXUjQJyh85Q-AQBLwk7RGSGKglB8hOTs2_g8hCpHHdJmiLnyZVn5UDu_7iuz08EHW3U7W73WermMdqmzTRfoxOl1speHOUYfj7P36XM9f3t6mT7Ma0OZzLXoCHGOO2KcYdw1fEGgEyCForpM3lGrMOVSMYa5YMQJZqRURPEOGl2-GqObfe6Qsm9TudWalRlCsCa35VdQhBd0u0ebOHxtbcpt75Ox67UOdtim4iSTUkKjCr3bUxOHlKJ17Sb6XsddQe1vmS1uD2UWe32I3S562_3Lv_boD31Ca1E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1074777098</pqid></control><display><type>article</type><title>Exciton transport in thin-film cyanine dye J-aggregates</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Valleau, Stéphanie ; Saikin, Semion K ; Yung, Man-Hong ; Aspuru Guzik, Alán</creator><creatorcontrib>Valleau, Stéphanie ; Saikin, Semion K ; Yung, Man-Hong ; Aspuru Guzik, Alán ; Energy Frontier Research Centers (EFRC) ; Center for Excitonics (CE)</creatorcontrib><description>We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an exciton on a lattice in different parameter regimes. The transition between the ballistic and diffusive regime is controlled by static and dynamic disorder. As an example, the model is applied to three cyanine dye J-aggregates: TC, TDBC, and U3. Each of the molecule-specific structure and excitation parameters are estimated using time-dependent density functional theory. The exciton diffusion coefficients are calculated and analyzed for different degrees of film disorder and are correlated to the physical properties and the structural arrangement of molecules in the aggregates. Further, exciton transport is anisotropic and dependent on the initial exciton energy. The upper-bound estimation of the exciton diffusion length in the TDBC thin-film J-aggregate is of the order of hundreds of nanometers, which is in good qualitative agreement with the diffusion length estimated from experiments.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4732122</identifier><identifier>PMID: 22830685</identifier><language>eng</language><publisher>United States</publisher><subject>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>J. Chem. Phys, 2012-07, Vol.137 (3), p.034109-034109</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6d22ff5f2cfc45f95b20d607683ad605d3e8135784415642f64c778285d09a473</citedby><cites>FETCH-LOGICAL-c347t-6d22ff5f2cfc45f95b20d607683ad605d3e8135784415642f64c778285d09a473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22830685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1080825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Valleau, Stéphanie</creatorcontrib><creatorcontrib>Saikin, Semion K</creatorcontrib><creatorcontrib>Yung, Man-Hong</creatorcontrib><creatorcontrib>Aspuru Guzik, Alán</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Excitonics (CE)</creatorcontrib><title>Exciton transport in thin-film cyanine dye J-aggregates</title><title>J. Chem. Phys</title><addtitle>J Chem Phys</addtitle><description>We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an exciton on a lattice in different parameter regimes. The transition between the ballistic and diffusive regime is controlled by static and dynamic disorder. As an example, the model is applied to three cyanine dye J-aggregates: TC, TDBC, and U3. Each of the molecule-specific structure and excitation parameters are estimated using time-dependent density functional theory. The exciton diffusion coefficients are calculated and analyzed for different degrees of film disorder and are correlated to the physical properties and the structural arrangement of molecules in the aggregates. Further, exciton transport is anisotropic and dependent on the initial exciton energy. The upper-bound estimation of the exciton diffusion length in the TDBC thin-film J-aggregate is of the order of hundreds of nanometers, which is in good qualitative agreement with the diffusion length estimated from experiments.</description><subject>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgitbqwT8giyc9bJ18Z49S6hcFL3pe0mzSRrrZmqRg_72RVk_DwMPLzIvQFYYJBkHv8YRJSjAhR2iEQTW1FA0coxEAwXUjQJyh85Q-AQBLwk7RGSGKglB8hOTs2_g8hCpHHdJmiLnyZVn5UDu_7iuz08EHW3U7W73WermMdqmzTRfoxOl1speHOUYfj7P36XM9f3t6mT7Ma0OZzLXoCHGOO2KcYdw1fEGgEyCForpM3lGrMOVSMYa5YMQJZqRURPEOGl2-GqObfe6Qsm9TudWalRlCsCa35VdQhBd0u0ebOHxtbcpt75Ox67UOdtim4iSTUkKjCr3bUxOHlKJ17Sb6XsddQe1vmS1uD2UWe32I3S562_3Lv_boD31Ca1E</recordid><startdate>20120721</startdate><enddate>20120721</enddate><creator>Valleau, Stéphanie</creator><creator>Saikin, Semion K</creator><creator>Yung, Man-Hong</creator><creator>Aspuru Guzik, Alán</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120721</creationdate><title>Exciton transport in thin-film cyanine dye J-aggregates</title><author>Valleau, Stéphanie ; Saikin, Semion K ; Yung, Man-Hong ; Aspuru Guzik, Alán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6d22ff5f2cfc45f95b20d607683ad605d3e8135784415642f64c778285d09a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valleau, Stéphanie</creatorcontrib><creatorcontrib>Saikin, Semion K</creatorcontrib><creatorcontrib>Yung, Man-Hong</creatorcontrib><creatorcontrib>Aspuru Guzik, Alán</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Excitonics (CE)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valleau, Stéphanie</au><au>Saikin, Semion K</au><au>Yung, Man-Hong</au><au>Aspuru Guzik, Alán</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exciton transport in thin-film cyanine dye J-aggregates</atitle><jtitle>J. Chem. Phys</jtitle><addtitle>J Chem Phys</addtitle><date>2012-07-21</date><risdate>2012</risdate><volume>137</volume><issue>3</issue><spage>034109</spage><epage>034109</epage><pages>034109-034109</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an exciton on a lattice in different parameter regimes. The transition between the ballistic and diffusive regime is controlled by static and dynamic disorder. As an example, the model is applied to three cyanine dye J-aggregates: TC, TDBC, and U3. Each of the molecule-specific structure and excitation parameters are estimated using time-dependent density functional theory. The exciton diffusion coefficients are calculated and analyzed for different degrees of film disorder and are correlated to the physical properties and the structural arrangement of molecules in the aggregates. Further, exciton transport is anisotropic and dependent on the initial exciton energy. The upper-bound estimation of the exciton diffusion length in the TDBC thin-film J-aggregate is of the order of hundreds of nanometers, which is in good qualitative agreement with the diffusion length estimated from experiments.</abstract><cop>United States</cop><pmid>22830685</pmid><doi>10.1063/1.4732122</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | J. Chem. Phys, 2012-07, Vol.137 (3), p.034109-034109 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1074777098 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) |
title | Exciton transport in thin-film cyanine dye J-aggregates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exciton%20transport%20in%20thin-film%20cyanine%20dye%20J-aggregates&rft.jtitle=J.%20Chem.%20Phys&rft.au=Valleau,%20St%C3%A9phanie&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-07-21&rft.volume=137&rft.issue=3&rft.spage=034109&rft.epage=034109&rft.pages=034109-034109&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4732122&rft_dat=%3Cproquest_osti_%3E1074777098%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1074777098&rft_id=info:pmid/22830685&rfr_iscdi=true |