Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation
The technology for electrical polarization and characterization of hydroxyapatite (HA) microgranules has been developed. This study aimed to examine and compare the efficacy of composites comprising electrically polarized HA (pHA) microgranules and platelet‐rich plasma (PRP) or hyaluronan (HAN) in o...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2012-11, Vol.100A (11), p.3167-3176 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3176 |
---|---|
container_issue | 11 |
container_start_page | 3167 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 100A |
creator | Ohba, Seiko Wang, Wei Itoh, Soichiro Takagi, Yuzo Nagai, Akiko Yamashita, Kimihiro |
description | The technology for electrical polarization and characterization of hydroxyapatite (HA) microgranules has been developed. This study aimed to examine and compare the efficacy of composites comprising electrically polarized HA (pHA) microgranules and platelet‐rich plasma (PRP) or hyaluronan (HAN) in osteoconductivity. Composites of HA microgranules with or without electrical polarization and either PRP or HAN (PRP+pHA, PRP+HA, HAN+pHA, and HAN+HA, respectively), as well as pHA and HA microgranules were implanted randomly into holes created in the medial femoral condyle or tibial tuberosity of rabbits. As a control, PRP or HAN gel alone was implanted, or the bone holes were left empty. Each group included six animals. After 6 weeks, histological examination was performed, and osteoclastic and osteoblastic cell activities were assessed by cell counting. Although PRP alone could not induce bone formation, PRP+pHA and PRP+HA composites, especially the former, activated osteogenic cells and enhanced bone formation. This effect was not prominent in the HAN+pHA and HAN+HA composites. PRP+HA composites formed a gel in which the ceramic particles were dispersed and entrapped in the fibrin network of PRP. It is assumed that these particles provide scaffolds for osteogenic cells, and when electrically polarized, can activate the cells in co‐operation with the positive effects of the PRP, resulting in enhanced bone formation. Conversely, it is conceivable that this composite gel cannot act as an accelerator for woven bone formation, because HAN with low viscoelasticity is absorbed rapidly after implantation, the hydrated network containing HA microgranules is destroyed, and the HA microgranules effuse with HAN from the bone hole. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3167–3176, 2012. |
doi_str_mv | 10.1002/jbm.a.34250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1074764883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1074764883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4980-f0e872e063af6e675afcab19985fdb9ac7cf270c7cf5545609e85de5771ad0bc3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEoqWwYo-8QUJCOTiOL8kSSltABTYgltbEGbcuzqV2IhpehlfFaU7LjtVc_P0z45kse17QXUEpe3PVdDvYlZwJ-iA7LIRgOa-leLj6vM5LVsuD7EmMVwmWVLDH2QFjFVeVqA-zPyfWOgNmIYMlo4cJPU55cOZyjWIH5AI9gb4llwv4OQw99Mltw3Cbj8RACA5DXPVJa6akBe8XMg4egvuN7YbfLDDC5CYknTNJHaCfPUZih0DAmCQN6bm_IM3Q45rtUjj0T7NHFnzEZ3t7lH0_Pfl2_CE__3r28fjteW54XdHcUqwUQypLsBKlEmANNEVdV8K2TQ1GGcsUXY0QXEhaYyVaFEoV0NLGlEfZq63uGIbrGeOkOxfTVB56HOaoC6q4kryqyoS-3tD0jRgDWj0G10FYEqTXi-h0EQ369iKJfrEvPDcdtvfs3QkS8HIPQEybs2kxxsV_nEzzci4SV2zcL-dx-V9P_end57vm-aZxccKbew2En1qqUgn948uZFux9IdSp0qL8C63otzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1074764883</pqid></control><display><type>article</type><title>Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Ohba, Seiko ; Wang, Wei ; Itoh, Soichiro ; Takagi, Yuzo ; Nagai, Akiko ; Yamashita, Kimihiro</creator><creatorcontrib>Ohba, Seiko ; Wang, Wei ; Itoh, Soichiro ; Takagi, Yuzo ; Nagai, Akiko ; Yamashita, Kimihiro</creatorcontrib><description>The technology for electrical polarization and characterization of hydroxyapatite (HA) microgranules has been developed. This study aimed to examine and compare the efficacy of composites comprising electrically polarized HA (pHA) microgranules and platelet‐rich plasma (PRP) or hyaluronan (HAN) in osteoconductivity. Composites of HA microgranules with or without electrical polarization and either PRP or HAN (PRP+pHA, PRP+HA, HAN+pHA, and HAN+HA, respectively), as well as pHA and HA microgranules were implanted randomly into holes created in the medial femoral condyle or tibial tuberosity of rabbits. As a control, PRP or HAN gel alone was implanted, or the bone holes were left empty. Each group included six animals. After 6 weeks, histological examination was performed, and osteoclastic and osteoblastic cell activities were assessed by cell counting. Although PRP alone could not induce bone formation, PRP+pHA and PRP+HA composites, especially the former, activated osteogenic cells and enhanced bone formation. This effect was not prominent in the HAN+pHA and HAN+HA composites. PRP+HA composites formed a gel in which the ceramic particles were dispersed and entrapped in the fibrin network of PRP. It is assumed that these particles provide scaffolds for osteogenic cells, and when electrically polarized, can activate the cells in co‐operation with the positive effects of the PRP, resulting in enhanced bone formation. Conversely, it is conceivable that this composite gel cannot act as an accelerator for woven bone formation, because HAN with low viscoelasticity is absorbed rapidly after implantation, the hydrated network containing HA microgranules is destroyed, and the HA microgranules effuse with HAN from the bone hole. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3167–3176, 2012.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34250</identifier><identifier>PMID: 22847859</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Bone Substitutes - chemistry ; Bone Substitutes - metabolism ; Bone Substitutes - therapeutic use ; Durapatite - chemistry ; Durapatite - metabolism ; Durapatite - therapeutic use ; electrical polarization ; Electrochemical Techniques ; Femur - cytology ; Femur - growth & development ; Femur - injuries ; hyaluronan ; Hyaluronic Acid - chemistry ; Hyaluronic Acid - metabolism ; Hyaluronic Acid - therapeutic use ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism ; Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use ; hydroxyapatite ; Medical sciences ; osteoconductivity ; Osteogenesis ; platelet-rich plasma ; Platelet-Rich Plasma - chemistry ; Platelet-Rich Plasma - metabolism ; Rabbits ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tibia - cytology ; Tibia - growth & development ; Tibia - injuries</subject><ispartof>Journal of biomedical materials research. Part A, 2012-11, Vol.100A (11), p.3167-3176</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4980-f0e872e063af6e675afcab19985fdb9ac7cf270c7cf5545609e85de5771ad0bc3</citedby><cites>FETCH-LOGICAL-c4980-f0e872e063af6e675afcab19985fdb9ac7cf270c7cf5545609e85de5771ad0bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34250$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34250$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26545445$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22847859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohba, Seiko</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Itoh, Soichiro</creatorcontrib><creatorcontrib>Takagi, Yuzo</creatorcontrib><creatorcontrib>Nagai, Akiko</creatorcontrib><creatorcontrib>Yamashita, Kimihiro</creatorcontrib><title>Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The technology for electrical polarization and characterization of hydroxyapatite (HA) microgranules has been developed. This study aimed to examine and compare the efficacy of composites comprising electrically polarized HA (pHA) microgranules and platelet‐rich plasma (PRP) or hyaluronan (HAN) in osteoconductivity. Composites of HA microgranules with or without electrical polarization and either PRP or HAN (PRP+pHA, PRP+HA, HAN+pHA, and HAN+HA, respectively), as well as pHA and HA microgranules were implanted randomly into holes created in the medial femoral condyle or tibial tuberosity of rabbits. As a control, PRP or HAN gel alone was implanted, or the bone holes were left empty. Each group included six animals. After 6 weeks, histological examination was performed, and osteoclastic and osteoblastic cell activities were assessed by cell counting. Although PRP alone could not induce bone formation, PRP+pHA and PRP+HA composites, especially the former, activated osteogenic cells and enhanced bone formation. This effect was not prominent in the HAN+pHA and HAN+HA composites. PRP+HA composites formed a gel in which the ceramic particles were dispersed and entrapped in the fibrin network of PRP. It is assumed that these particles provide scaffolds for osteogenic cells, and when electrically polarized, can activate the cells in co‐operation with the positive effects of the PRP, resulting in enhanced bone formation. Conversely, it is conceivable that this composite gel cannot act as an accelerator for woven bone formation, because HAN with low viscoelasticity is absorbed rapidly after implantation, the hydrated network containing HA microgranules is destroyed, and the HA microgranules effuse with HAN from the bone hole. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3167–3176, 2012.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - metabolism</subject><subject>Bone Substitutes - therapeutic use</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - metabolism</subject><subject>Durapatite - therapeutic use</subject><subject>electrical polarization</subject><subject>Electrochemical Techniques</subject><subject>Femur - cytology</subject><subject>Femur - growth & development</subject><subject>Femur - injuries</subject><subject>hyaluronan</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hyaluronic Acid - metabolism</subject><subject>Hyaluronic Acid - therapeutic use</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use</subject><subject>hydroxyapatite</subject><subject>Medical sciences</subject><subject>osteoconductivity</subject><subject>Osteogenesis</subject><subject>platelet-rich plasma</subject><subject>Platelet-Rich Plasma - chemistry</subject><subject>Platelet-Rich Plasma - metabolism</subject><subject>Rabbits</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tibia - cytology</subject><subject>Tibia - growth & development</subject><subject>Tibia - injuries</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1TAQhiMEoqWwYo-8QUJCOTiOL8kSSltABTYgltbEGbcuzqV2IhpehlfFaU7LjtVc_P0z45kse17QXUEpe3PVdDvYlZwJ-iA7LIRgOa-leLj6vM5LVsuD7EmMVwmWVLDH2QFjFVeVqA-zPyfWOgNmIYMlo4cJPU55cOZyjWIH5AI9gb4llwv4OQw99Mltw3Cbj8RACA5DXPVJa6akBe8XMg4egvuN7YbfLDDC5CYknTNJHaCfPUZih0DAmCQN6bm_IM3Q45rtUjj0T7NHFnzEZ3t7lH0_Pfl2_CE__3r28fjteW54XdHcUqwUQypLsBKlEmANNEVdV8K2TQ1GGcsUXY0QXEhaYyVaFEoV0NLGlEfZq63uGIbrGeOkOxfTVB56HOaoC6q4kryqyoS-3tD0jRgDWj0G10FYEqTXi-h0EQ369iKJfrEvPDcdtvfs3QkS8HIPQEybs2kxxsV_nEzzci4SV2zcL-dx-V9P_end57vm-aZxccKbew2En1qqUgn948uZFux9IdSp0qL8C63otzU</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Ohba, Seiko</creator><creator>Wang, Wei</creator><creator>Itoh, Soichiro</creator><creator>Takagi, Yuzo</creator><creator>Nagai, Akiko</creator><creator>Yamashita, Kimihiro</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201211</creationdate><title>Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation</title><author>Ohba, Seiko ; Wang, Wei ; Itoh, Soichiro ; Takagi, Yuzo ; Nagai, Akiko ; Yamashita, Kimihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4980-f0e872e063af6e675afcab19985fdb9ac7cf270c7cf5545609e85de5771ad0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - metabolism</topic><topic>Bone Substitutes - therapeutic use</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - metabolism</topic><topic>Durapatite - therapeutic use</topic><topic>electrical polarization</topic><topic>Electrochemical Techniques</topic><topic>Femur - cytology</topic><topic>Femur - growth & development</topic><topic>Femur - injuries</topic><topic>hyaluronan</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hyaluronic Acid - metabolism</topic><topic>Hyaluronic Acid - therapeutic use</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use</topic><topic>hydroxyapatite</topic><topic>Medical sciences</topic><topic>osteoconductivity</topic><topic>Osteogenesis</topic><topic>platelet-rich plasma</topic><topic>Platelet-Rich Plasma - chemistry</topic><topic>Platelet-Rich Plasma - metabolism</topic><topic>Rabbits</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tibia - cytology</topic><topic>Tibia - growth & development</topic><topic>Tibia - injuries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohba, Seiko</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Itoh, Soichiro</creatorcontrib><creatorcontrib>Takagi, Yuzo</creatorcontrib><creatorcontrib>Nagai, Akiko</creatorcontrib><creatorcontrib>Yamashita, Kimihiro</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohba, Seiko</au><au>Wang, Wei</au><au>Itoh, Soichiro</au><au>Takagi, Yuzo</au><au>Nagai, Akiko</au><au>Yamashita, Kimihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2012-11</date><risdate>2012</risdate><volume>100A</volume><issue>11</issue><spage>3167</spage><epage>3176</epage><pages>3167-3176</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The technology for electrical polarization and characterization of hydroxyapatite (HA) microgranules has been developed. This study aimed to examine and compare the efficacy of composites comprising electrically polarized HA (pHA) microgranules and platelet‐rich plasma (PRP) or hyaluronan (HAN) in osteoconductivity. Composites of HA microgranules with or without electrical polarization and either PRP or HAN (PRP+pHA, PRP+HA, HAN+pHA, and HAN+HA, respectively), as well as pHA and HA microgranules were implanted randomly into holes created in the medial femoral condyle or tibial tuberosity of rabbits. As a control, PRP or HAN gel alone was implanted, or the bone holes were left empty. Each group included six animals. After 6 weeks, histological examination was performed, and osteoclastic and osteoblastic cell activities were assessed by cell counting. Although PRP alone could not induce bone formation, PRP+pHA and PRP+HA composites, especially the former, activated osteogenic cells and enhanced bone formation. This effect was not prominent in the HAN+pHA and HAN+HA composites. PRP+HA composites formed a gel in which the ceramic particles were dispersed and entrapped in the fibrin network of PRP. It is assumed that these particles provide scaffolds for osteogenic cells, and when electrically polarized, can activate the cells in co‐operation with the positive effects of the PRP, resulting in enhanced bone formation. Conversely, it is conceivable that this composite gel cannot act as an accelerator for woven bone formation, because HAN with low viscoelasticity is absorbed rapidly after implantation, the hydrated network containing HA microgranules is destroyed, and the HA microgranules effuse with HAN from the bone hole. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3167–3176, 2012.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22847859</pmid><doi>10.1002/jbm.a.34250</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2012-11, Vol.100A (11), p.3167-3176 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1074764883 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Animals Biological and medical sciences Bone Substitutes - chemistry Bone Substitutes - metabolism Bone Substitutes - therapeutic use Durapatite - chemistry Durapatite - metabolism Durapatite - therapeutic use electrical polarization Electrochemical Techniques Femur - cytology Femur - growth & development Femur - injuries hyaluronan Hyaluronic Acid - chemistry Hyaluronic Acid - metabolism Hyaluronic Acid - therapeutic use Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use hydroxyapatite Medical sciences osteoconductivity Osteogenesis platelet-rich plasma Platelet-Rich Plasma - chemistry Platelet-Rich Plasma - metabolism Rabbits Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tibia - cytology Tibia - growth & development Tibia - injuries |
title | Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficacy%20of%20platelet-rich%20plasma%20gel%20and%20hyaluronan%20hydrogel%20as%20carriers%20of%20electrically%20polarized%20hydroxyapatite%20microgranules%20for%20accelerating%20bone%20formation&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Ohba,%20Seiko&rft.date=2012-11&rft.volume=100A&rft.issue=11&rft.spage=3167&rft.epage=3176&rft.pages=3167-3176&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34250&rft_dat=%3Cproquest_cross%3E1074764883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1074764883&rft_id=info:pmid/22847859&rfr_iscdi=true |