Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity

In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2012-09, Vol.7 (9), p.1520-1528
Hauptverfasser: McLellan, Catherine A, Whitesell, Luke, King, Oliver D, Lancaster, Alex K, Mazitschek, Ralph, Lindquist, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1528
container_issue 9
container_start_page 1520
container_title ACS chemical biology
container_volume 7
creator McLellan, Catherine A
Whitesell, Luke
King, Oliver D
Lancaster, Alex K
Mazitschek, Ralph
Lindquist, Susan
description In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.
doi_str_mv 10.1021/cb300235m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069205224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069205224</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgSgUBv4A8oIEQ8AfcZyMpWpLpEogPubIca6Nq8QpdjL032PU0onpTrpHr3QvQjeUPFLC6JMuOSGMi_YEXVAh4ijNuDw97iwboUvvN4TEPEmzczRiTLJYpPEF2uS2NqXpjV3jxVuOJ1bXncPPpvM729fgjcfG4vlg1wZ_9A68B4_DAc9s1W0b5Vuj8Tv0Rg_N0GJlq3CpldWB5W072G4N1mjT767Q2Uo1Hq4Pc4y-5rPP6Uu0fF3k08kyUlyQPlJMlJCFnQIpMy0Ek0mlBAOopKQKOFU0LaXUgsdJnCaxBJJyVkJarQgtFR-j-33u1nXfA_i-aI3X0DTKQjf4gpIkY0QwFgf6sKfadd47WBVbZ1rldgEVv9UWx2qDvT3EDmUL1VH-dRnA3R4o7YtNNzgbvvwn6AdlDIBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069205224</pqid></control><display><type>article</type><title>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</title><source>MEDLINE</source><source>ACS Publications</source><creator>McLellan, Catherine A ; Whitesell, Luke ; King, Oliver D ; Lancaster, Alex K ; Mazitschek, Ralph ; Lindquist, Susan</creator><creatorcontrib>McLellan, Catherine A ; Whitesell, Luke ; King, Oliver D ; Lancaster, Alex K ; Mazitschek, Ralph ; Lindquist, Susan</creatorcontrib><description>In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/cb300235m</identifier><identifier>PMID: 22724584</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Antifungal Agents - chemistry ; Antifungal Agents - pharmacology ; Candida - cytology ; Candida - drug effects ; Candida - physiology ; Candidiasis - drug therapy ; Candidiasis - microbiology ; Cell Line ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Fungi - cytology ; Fungi - drug effects ; Fungi - physiology ; Glycosylphosphatidylinositols - metabolism ; Host-Parasite Interactions ; Humans ; Mice ; Molecular Sequence Data ; Mycoses - drug therapy ; Mycoses - microbiology ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - antagonists &amp; inhibitors ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>ACS chemical biology, 2012-09, Vol.7 (9), p.1520-1528</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</citedby><cites>FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cb300235m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cb300235m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22724584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLellan, Catherine A</creatorcontrib><creatorcontrib>Whitesell, Luke</creatorcontrib><creatorcontrib>King, Oliver D</creatorcontrib><creatorcontrib>Lancaster, Alex K</creatorcontrib><creatorcontrib>Mazitschek, Ralph</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><title>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - pharmacology</subject><subject>Candida - cytology</subject><subject>Candida - drug effects</subject><subject>Candida - physiology</subject><subject>Candidiasis - drug therapy</subject><subject>Candidiasis - microbiology</subject><subject>Cell Line</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fungi - cytology</subject><subject>Fungi - drug effects</subject><subject>Fungi - physiology</subject><subject>Glycosylphosphatidylinositols - metabolism</subject><subject>Host-Parasite Interactions</subject><subject>Humans</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mycoses - drug therapy</subject><subject>Mycoses - microbiology</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - antagonists &amp; inhibitors</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0D1PwzAQBmALgSgUBv4A8oIEQ8AfcZyMpWpLpEogPubIca6Nq8QpdjL032PU0onpTrpHr3QvQjeUPFLC6JMuOSGMi_YEXVAh4ijNuDw97iwboUvvN4TEPEmzczRiTLJYpPEF2uS2NqXpjV3jxVuOJ1bXncPPpvM729fgjcfG4vlg1wZ_9A68B4_DAc9s1W0b5Vuj8Tv0Rg_N0GJlq3CpldWB5W072G4N1mjT767Q2Uo1Hq4Pc4y-5rPP6Uu0fF3k08kyUlyQPlJMlJCFnQIpMy0Ek0mlBAOopKQKOFU0LaXUgsdJnCaxBJJyVkJarQgtFR-j-33u1nXfA_i-aI3X0DTKQjf4gpIkY0QwFgf6sKfadd47WBVbZ1rldgEVv9UWx2qDvT3EDmUL1VH-dRnA3R4o7YtNNzgbvvwn6AdlDIBf</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>McLellan, Catherine A</creator><creator>Whitesell, Luke</creator><creator>King, Oliver D</creator><creator>Lancaster, Alex K</creator><creator>Mazitschek, Ralph</creator><creator>Lindquist, Susan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120921</creationdate><title>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</title><author>McLellan, Catherine A ; Whitesell, Luke ; King, Oliver D ; Lancaster, Alex K ; Mazitschek, Ralph ; Lindquist, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - pharmacology</topic><topic>Candida - cytology</topic><topic>Candida - drug effects</topic><topic>Candida - physiology</topic><topic>Candidiasis - drug therapy</topic><topic>Candidiasis - microbiology</topic><topic>Cell Line</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fungi - cytology</topic><topic>Fungi - drug effects</topic><topic>Fungi - physiology</topic><topic>Glycosylphosphatidylinositols - metabolism</topic><topic>Host-Parasite Interactions</topic><topic>Humans</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mycoses - drug therapy</topic><topic>Mycoses - microbiology</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - antagonists &amp; inhibitors</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLellan, Catherine A</creatorcontrib><creatorcontrib>Whitesell, Luke</creatorcontrib><creatorcontrib>King, Oliver D</creatorcontrib><creatorcontrib>Lancaster, Alex K</creatorcontrib><creatorcontrib>Mazitschek, Ralph</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLellan, Catherine A</au><au>Whitesell, Luke</au><au>King, Oliver D</au><au>Lancaster, Alex K</au><au>Mazitschek, Ralph</au><au>Lindquist, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2012-09-21</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>1520</spage><epage>1528</epage><pages>1520-1528</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22724584</pmid><doi>10.1021/cb300235m</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2012-09, Vol.7 (9), p.1520-1528
issn 1554-8929
1554-8937
language eng
recordid cdi_proquest_miscellaneous_1069205224
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Animals
Antifungal Agents - chemistry
Antifungal Agents - pharmacology
Candida - cytology
Candida - drug effects
Candida - physiology
Candidiasis - drug therapy
Candidiasis - microbiology
Cell Line
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Fungi - cytology
Fungi - drug effects
Fungi - physiology
Glycosylphosphatidylinositols - metabolism
Host-Parasite Interactions
Humans
Mice
Molecular Sequence Data
Mycoses - drug therapy
Mycoses - microbiology
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - antagonists & inhibitors
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
title Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20GPI%20Anchor%20Biosynthesis%20in%20Fungi%20Stresses%20the%20Endoplasmic%20Reticulum%20and%20Enhances%20Immunogenicity&rft.jtitle=ACS%20chemical%20biology&rft.au=McLellan,%20Catherine%20A&rft.date=2012-09-21&rft.volume=7&rft.issue=9&rft.spage=1520&rft.epage=1528&rft.pages=1520-1528&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/cb300235m&rft_dat=%3Cproquest_cross%3E1069205224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069205224&rft_id=info:pmid/22724584&rfr_iscdi=true