Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity
In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthe...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2012-09, Vol.7 (9), p.1520-1528 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1528 |
---|---|
container_issue | 9 |
container_start_page | 1520 |
container_title | ACS chemical biology |
container_volume | 7 |
creator | McLellan, Catherine A Whitesell, Luke King, Oliver D Lancaster, Alex K Mazitschek, Ralph Lindquist, Susan |
description | In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi. |
doi_str_mv | 10.1021/cb300235m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069205224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069205224</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgSgUBv4A8oIEQ8AfcZyMpWpLpEogPubIca6Nq8QpdjL032PU0onpTrpHr3QvQjeUPFLC6JMuOSGMi_YEXVAh4ijNuDw97iwboUvvN4TEPEmzczRiTLJYpPEF2uS2NqXpjV3jxVuOJ1bXncPPpvM729fgjcfG4vlg1wZ_9A68B4_DAc9s1W0b5Vuj8Tv0Rg_N0GJlq3CpldWB5W072G4N1mjT767Q2Uo1Hq4Pc4y-5rPP6Uu0fF3k08kyUlyQPlJMlJCFnQIpMy0Ek0mlBAOopKQKOFU0LaXUgsdJnCaxBJJyVkJarQgtFR-j-33u1nXfA_i-aI3X0DTKQjf4gpIkY0QwFgf6sKfadd47WBVbZ1rldgEVv9UWx2qDvT3EDmUL1VH-dRnA3R4o7YtNNzgbvvwn6AdlDIBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069205224</pqid></control><display><type>article</type><title>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</title><source>MEDLINE</source><source>ACS Publications</source><creator>McLellan, Catherine A ; Whitesell, Luke ; King, Oliver D ; Lancaster, Alex K ; Mazitschek, Ralph ; Lindquist, Susan</creator><creatorcontrib>McLellan, Catherine A ; Whitesell, Luke ; King, Oliver D ; Lancaster, Alex K ; Mazitschek, Ralph ; Lindquist, Susan</creatorcontrib><description>In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/cb300235m</identifier><identifier>PMID: 22724584</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Antifungal Agents - chemistry ; Antifungal Agents - pharmacology ; Candida - cytology ; Candida - drug effects ; Candida - physiology ; Candidiasis - drug therapy ; Candidiasis - microbiology ; Cell Line ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Fungi - cytology ; Fungi - drug effects ; Fungi - physiology ; Glycosylphosphatidylinositols - metabolism ; Host-Parasite Interactions ; Humans ; Mice ; Molecular Sequence Data ; Mycoses - drug therapy ; Mycoses - microbiology ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - antagonists & inhibitors ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>ACS chemical biology, 2012-09, Vol.7 (9), p.1520-1528</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</citedby><cites>FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cb300235m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cb300235m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22724584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLellan, Catherine A</creatorcontrib><creatorcontrib>Whitesell, Luke</creatorcontrib><creatorcontrib>King, Oliver D</creatorcontrib><creatorcontrib>Lancaster, Alex K</creatorcontrib><creatorcontrib>Mazitschek, Ralph</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><title>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - pharmacology</subject><subject>Candida - cytology</subject><subject>Candida - drug effects</subject><subject>Candida - physiology</subject><subject>Candidiasis - drug therapy</subject><subject>Candidiasis - microbiology</subject><subject>Cell Line</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fungi - cytology</subject><subject>Fungi - drug effects</subject><subject>Fungi - physiology</subject><subject>Glycosylphosphatidylinositols - metabolism</subject><subject>Host-Parasite Interactions</subject><subject>Humans</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mycoses - drug therapy</subject><subject>Mycoses - microbiology</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - antagonists & inhibitors</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0D1PwzAQBmALgSgUBv4A8oIEQ8AfcZyMpWpLpEogPubIca6Nq8QpdjL032PU0onpTrpHr3QvQjeUPFLC6JMuOSGMi_YEXVAh4ijNuDw97iwboUvvN4TEPEmzczRiTLJYpPEF2uS2NqXpjV3jxVuOJ1bXncPPpvM729fgjcfG4vlg1wZ_9A68B4_DAc9s1W0b5Vuj8Tv0Rg_N0GJlq3CpldWB5W072G4N1mjT767Q2Uo1Hq4Pc4y-5rPP6Uu0fF3k08kyUlyQPlJMlJCFnQIpMy0Ek0mlBAOopKQKOFU0LaXUgsdJnCaxBJJyVkJarQgtFR-j-33u1nXfA_i-aI3X0DTKQjf4gpIkY0QwFgf6sKfadd47WBVbZ1rldgEVv9UWx2qDvT3EDmUL1VH-dRnA3R4o7YtNNzgbvvwn6AdlDIBf</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>McLellan, Catherine A</creator><creator>Whitesell, Luke</creator><creator>King, Oliver D</creator><creator>Lancaster, Alex K</creator><creator>Mazitschek, Ralph</creator><creator>Lindquist, Susan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120921</creationdate><title>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</title><author>McLellan, Catherine A ; Whitesell, Luke ; King, Oliver D ; Lancaster, Alex K ; Mazitschek, Ralph ; Lindquist, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-a25be9a351e0b9c55276da52eed771ae31a18b77c534648647e0832be8df01ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - pharmacology</topic><topic>Candida - cytology</topic><topic>Candida - drug effects</topic><topic>Candida - physiology</topic><topic>Candidiasis - drug therapy</topic><topic>Candidiasis - microbiology</topic><topic>Cell Line</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fungi - cytology</topic><topic>Fungi - drug effects</topic><topic>Fungi - physiology</topic><topic>Glycosylphosphatidylinositols - metabolism</topic><topic>Host-Parasite Interactions</topic><topic>Humans</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mycoses - drug therapy</topic><topic>Mycoses - microbiology</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - antagonists & inhibitors</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLellan, Catherine A</creatorcontrib><creatorcontrib>Whitesell, Luke</creatorcontrib><creatorcontrib>King, Oliver D</creatorcontrib><creatorcontrib>Lancaster, Alex K</creatorcontrib><creatorcontrib>Mazitschek, Ralph</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLellan, Catherine A</au><au>Whitesell, Luke</au><au>King, Oliver D</au><au>Lancaster, Alex K</au><au>Mazitschek, Ralph</au><au>Lindquist, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2012-09-21</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>1520</spage><epage>1528</epage><pages>1520-1528</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1’s effects on host–pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host–pathogen interactions in genetically intractable fungi.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22724584</pmid><doi>10.1021/cb300235m</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8929 |
ispartof | ACS chemical biology, 2012-09, Vol.7 (9), p.1520-1528 |
issn | 1554-8929 1554-8937 |
language | eng |
recordid | cdi_proquest_miscellaneous_1069205224 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Animals Antifungal Agents - chemistry Antifungal Agents - pharmacology Candida - cytology Candida - drug effects Candida - physiology Candidiasis - drug therapy Candidiasis - microbiology Cell Line Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Fungi - cytology Fungi - drug effects Fungi - physiology Glycosylphosphatidylinositols - metabolism Host-Parasite Interactions Humans Mice Molecular Sequence Data Mycoses - drug therapy Mycoses - microbiology Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - antagonists & inhibitors Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism |
title | Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20GPI%20Anchor%20Biosynthesis%20in%20Fungi%20Stresses%20the%20Endoplasmic%20Reticulum%20and%20Enhances%20Immunogenicity&rft.jtitle=ACS%20chemical%20biology&rft.au=McLellan,%20Catherine%20A&rft.date=2012-09-21&rft.volume=7&rft.issue=9&rft.spage=1520&rft.epage=1528&rft.pages=1520-1528&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/cb300235m&rft_dat=%3Cproquest_cross%3E1069205224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069205224&rft_id=info:pmid/22724584&rfr_iscdi=true |