Assessment and prediction of air quality using fuzzy logic and autoregressive models

In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2012-12, Vol.60, p.37-50
Hauptverfasser: Carbajal-Hernández, José Juan, Sánchez-Fernández, Luis P., Carrasco-Ochoa, Jesús A., Martínez-Trinidad, José Fco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 37
container_title Atmospheric environment (1994)
container_volume 60
creator Carbajal-Hernández, José Juan
Sánchez-Fernández, Luis P.
Carrasco-Ochoa, Jesús A.
Martínez-Trinidad, José Fco
description In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas. ► We examine air quality parameter levels using a statistical index (Sigma). ► We model environmental interactions using a reasoning process. ► We predict air quality parameters using historical observations. ► We compare the proposed air quality index with the Mexican and the U.S. indices. ► Our results show a better performance compared against traditional methodologies.
doi_str_mv 10.1016/j.atmosenv.2012.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069202249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231012005341</els_id><sourcerecordid>1069202249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-66c43133764b80edc101baf304fe69096008caa727b3e0e369c2b039f1c48c773</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEmXhL4AvSFwSxh-14xtVVT6kShxoz5bXmay8SuKtJ1lp--tx2cKV08zhmXdmHsbeC2gFCPN534ZlyoTzsZUgZAumBdAv2IXorGpkp_XL2qtL2Ugl4DV7Q7QHAGWdvWB3V0RINOG88DD3_FCwT3FJeeZ54CEV_rCGMS0nvlKad3xYHx9PfMy7FP_wYV1ywV2pGemIfMo9jvSWvRrCSPjuuW7Y_debu-vvze3Pbz-ur26bqJxbGmOiVkIpa_S2A-xjfWcbBgV6QOPAGYAuhmCl3SoEVMZFuQXlBhF1F61VG_bpnHso-WFFWvyUKOI4hhnzSl6AcRKk1K6i5ozGkokKDv5Q0hTKqUL-SaPf-78a_ZNGD8ZXjXXw4_OOQDGMQwlzTPRvWhrlQGpTuQ9nbgjZh12pzP2vGnQJIFxnq-8N-3ImqiE8JiyeYsI5VuEF4-L7nP53zG-VtpXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069202249</pqid></control><display><type>article</type><title>Assessment and prediction of air quality using fuzzy logic and autoregressive models</title><source>Access via ScienceDirect (Elsevier)</source><creator>Carbajal-Hernández, José Juan ; Sánchez-Fernández, Luis P. ; Carrasco-Ochoa, Jesús A. ; Martínez-Trinidad, José Fco</creator><creatorcontrib>Carbajal-Hernández, José Juan ; Sánchez-Fernández, Luis P. ; Carrasco-Ochoa, Jesús A. ; Martínez-Trinidad, José Fco</creatorcontrib><description>In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas. ► We examine air quality parameter levels using a statistical index (Sigma). ► We model environmental interactions using a reasoning process. ► We predict air quality parameters using historical observations. ► We compare the proposed air quality index with the Mexican and the U.S. indices. ► Our results show a better performance compared against traditional methodologies.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2012.06.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air quality ; Air quality assessment ; Analysis methods ; Applied sciences ; Artificial intelligence ; Assessments ; atmospheric chemistry ; Atmospheric pollution ; Atmospherics ; Exact sciences and technology ; Fuzzy ; Fuzzy logic ; Inference ; Mathematical models ; monitoring ; Pattern processing ; people ; Pollution ; Prediction ; toxicity ; Urban areas</subject><ispartof>Atmospheric environment (1994), 2012-12, Vol.60, p.37-50</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-66c43133764b80edc101baf304fe69096008caa727b3e0e369c2b039f1c48c773</citedby><cites>FETCH-LOGICAL-c399t-66c43133764b80edc101baf304fe69096008caa727b3e0e369c2b039f1c48c773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.atmosenv.2012.06.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26390246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carbajal-Hernández, José Juan</creatorcontrib><creatorcontrib>Sánchez-Fernández, Luis P.</creatorcontrib><creatorcontrib>Carrasco-Ochoa, Jesús A.</creatorcontrib><creatorcontrib>Martínez-Trinidad, José Fco</creatorcontrib><title>Assessment and prediction of air quality using fuzzy logic and autoregressive models</title><title>Atmospheric environment (1994)</title><description>In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas. ► We examine air quality parameter levels using a statistical index (Sigma). ► We model environmental interactions using a reasoning process. ► We predict air quality parameters using historical observations. ► We compare the proposed air quality index with the Mexican and the U.S. indices. ► Our results show a better performance compared against traditional methodologies.</description><subject>Air quality</subject><subject>Air quality assessment</subject><subject>Analysis methods</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Assessments</subject><subject>atmospheric chemistry</subject><subject>Atmospheric pollution</subject><subject>Atmospherics</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>monitoring</subject><subject>Pattern processing</subject><subject>people</subject><subject>Pollution</subject><subject>Prediction</subject><subject>toxicity</subject><subject>Urban areas</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEmXhL4AvSFwSxh-14xtVVT6kShxoz5bXmay8SuKtJ1lp--tx2cKV08zhmXdmHsbeC2gFCPN534ZlyoTzsZUgZAumBdAv2IXorGpkp_XL2qtL2Ugl4DV7Q7QHAGWdvWB3V0RINOG88DD3_FCwT3FJeeZ54CEV_rCGMS0nvlKad3xYHx9PfMy7FP_wYV1ywV2pGemIfMo9jvSWvRrCSPjuuW7Y_debu-vvze3Pbz-ur26bqJxbGmOiVkIpa_S2A-xjfWcbBgV6QOPAGYAuhmCl3SoEVMZFuQXlBhF1F61VG_bpnHso-WFFWvyUKOI4hhnzSl6AcRKk1K6i5ozGkokKDv5Q0hTKqUL-SaPf-78a_ZNGD8ZXjXXw4_OOQDGMQwlzTPRvWhrlQGpTuQ9nbgjZh12pzP2vGnQJIFxnq-8N-3ImqiE8JiyeYsI5VuEF4-L7nP53zG-VtpXI</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Carbajal-Hernández, José Juan</creator><creator>Sánchez-Fernández, Luis P.</creator><creator>Carrasco-Ochoa, Jesús A.</creator><creator>Martínez-Trinidad, José Fco</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Assessment and prediction of air quality using fuzzy logic and autoregressive models</title><author>Carbajal-Hernández, José Juan ; Sánchez-Fernández, Luis P. ; Carrasco-Ochoa, Jesús A. ; Martínez-Trinidad, José Fco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-66c43133764b80edc101baf304fe69096008caa727b3e0e369c2b039f1c48c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air quality</topic><topic>Air quality assessment</topic><topic>Analysis methods</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Assessments</topic><topic>atmospheric chemistry</topic><topic>Atmospheric pollution</topic><topic>Atmospherics</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>monitoring</topic><topic>Pattern processing</topic><topic>people</topic><topic>Pollution</topic><topic>Prediction</topic><topic>toxicity</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carbajal-Hernández, José Juan</creatorcontrib><creatorcontrib>Sánchez-Fernández, Luis P.</creatorcontrib><creatorcontrib>Carrasco-Ochoa, Jesús A.</creatorcontrib><creatorcontrib>Martínez-Trinidad, José Fco</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carbajal-Hernández, José Juan</au><au>Sánchez-Fernández, Luis P.</au><au>Carrasco-Ochoa, Jesús A.</au><au>Martínez-Trinidad, José Fco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment and prediction of air quality using fuzzy logic and autoregressive models</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>60</volume><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas. ► We examine air quality parameter levels using a statistical index (Sigma). ► We model environmental interactions using a reasoning process. ► We predict air quality parameters using historical observations. ► We compare the proposed air quality index with the Mexican and the U.S. indices. ► Our results show a better performance compared against traditional methodologies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2012.06.004</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 2012-12, Vol.60, p.37-50
issn 1352-2310
1873-2844
language eng
recordid cdi_proquest_miscellaneous_1069202249
source Access via ScienceDirect (Elsevier)
subjects Air quality
Air quality assessment
Analysis methods
Applied sciences
Artificial intelligence
Assessments
atmospheric chemistry
Atmospheric pollution
Atmospherics
Exact sciences and technology
Fuzzy
Fuzzy logic
Inference
Mathematical models
monitoring
Pattern processing
people
Pollution
Prediction
toxicity
Urban areas
title Assessment and prediction of air quality using fuzzy logic and autoregressive models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20and%20prediction%20of%20air%20quality%20using%20fuzzy%20logic%20and%20autoregressive%20models&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Carbajal-Hern%C3%A1ndez,%20Jos%C3%A9%20Juan&rft.date=2012-12-01&rft.volume=60&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2012.06.004&rft_dat=%3Cproquest_cross%3E1069202249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069202249&rft_id=info:pmid/&rft_els_id=S1352231012005341&rfr_iscdi=true