Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data

In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2012-06, Vol.44 (2), p.532-545
Hauptverfasser: Wilderjans, T. F., Ceulemans, E., Kuppens, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 545
container_issue 2
container_start_page 532
container_title Behavior Research Methods
container_volume 44
creator Wilderjans, T. F.
Ceulemans, E.
Kuppens, P.
description In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different country, regarding a set of test items. When dealing with such data, a key challenge consists of uncovering the differences and similarities between the structural mechanisms that underlie the different blocks. To tackle this challenge for the case of a single data block, one may rely on HICLAS, in which the variables are reduced to a limited set of binary bundles that represent the underlying structural mechanisms, and the objects are given scores for these bundles. In the case of multiple binary data blocks, one may perform HICLAS on each data block separately. However, such an analysis strategy obscures the similarities and, in the case of many data blocks, also the differences between the blocks. To resolve this problem, we proposed the new Clusterwise HICLAS generic modeling strategy. In this strategy, the different data blocks are assumed to form a set of mutually exclusive clusters. For each cluster, different bundles are derived. As such, blocks belonging to the same cluster have the same bundles, whereas blocks of different clusters are modeled with different bundles. Furthermore, we evaluated the performance of Clusterwise HICLAS by means of an extensive simulation study and by applying the strategy to coupled binary data regarding emotion differentiation and regulation.
doi_str_mv 10.3758/s13428-011-0166-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069202057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714175945</galeid><sourcerecordid>A714175945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-79ea737d668f64228a1cc99c331c1825cf897f61b6362af9b6248846c1b990f33</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhgex2Fr9AW4k4MbNtJPvxN3lorZwoQt1PWQyJ0NqJqnJDKX_3lymShGEEkJOkuc9OTlv07zD3QWVXF0WTBlRbYdxnUK0-kVzhjlnLeVEvXwSnzavS7ntOqoIZq-aU0I6RQXXZ03ah7UskO99AXR1vT_svn1COzRBhOwtmtMIwccJlSWbBaYHtCRUQwuo-NkHk_3ioSATRzR65yBDtHXvI5rXsPghJPsTDT6a_IBGs5g3zYkzocDbx_W8-fHl8_f9VXu4-Xq93x1ayzFfWqnBSCpHIZQTjBBlsLVaW0qxxYpw65SWTuBBUEGM04MgTCkmLB607hyl583HLe9dTr9WKEs_-2IhBBMhraXHndCkIx2Xz0AxJ0xqiSv64R_0Nq051o9UqiYTWrPj2xcbNZkAvY8uHTtWxwiztymC8_V8JzHDkmvGqwBvAptTKRlcf5f9XFtWs_ZHp_vN6b463R-d7nXVvH8sZR1mGP8q_lhbAbIBpV7FCfLTWv-X9TfAW7Ge</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020569943</pqid></control><display><type>article</type><title>Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wilderjans, T. F. ; Ceulemans, E. ; Kuppens, P.</creator><creatorcontrib>Wilderjans, T. F. ; Ceulemans, E. ; Kuppens, P.</creatorcontrib><description>In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different country, regarding a set of test items. When dealing with such data, a key challenge consists of uncovering the differences and similarities between the structural mechanisms that underlie the different blocks. To tackle this challenge for the case of a single data block, one may rely on HICLAS, in which the variables are reduced to a limited set of binary bundles that represent the underlying structural mechanisms, and the objects are given scores for these bundles. In the case of multiple binary data blocks, one may perform HICLAS on each data block separately. However, such an analysis strategy obscures the similarities and, in the case of many data blocks, also the differences between the blocks. To resolve this problem, we proposed the new Clusterwise HICLAS generic modeling strategy. In this strategy, the different data blocks are assumed to form a set of mutually exclusive clusters. For each cluster, different bundles are derived. As such, blocks belonging to the same cluster have the same bundles, whereas blocks of different clusters are modeled with different bundles. Furthermore, we evaluated the performance of Clusterwise HICLAS by means of an extensive simulation study and by applying the strategy to coupled binary data regarding emotion differentiation and regulation.</description><identifier>ISSN: 1554-3528</identifier><identifier>ISSN: 1554-351X</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-011-0166-9</identifier><identifier>PMID: 22083659</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Analysis ; Behavior ; Behavioral Science and Psychology ; Behavioral Sciences - methods ; Behavioral Sciences - statistics &amp; numerical data ; Cluster Analysis ; Cognitive Psychology ; Computer Simulation ; Data Interpretation, Statistical ; Data processing ; Differentiation ; Emotions ; Emotions - physiology ; Factor Analysis, Statistical ; Humans ; Internet ; Mediation ; Models, Psychological ; Models, Statistical ; Psychology ; Regression analysis ; Research Design ; Studies ; Variables</subject><ispartof>Behavior Research Methods, 2012-06, Vol.44 (2), p.532-545</ispartof><rights>Psychonomic Society, Inc. 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Copyright Springer Science &amp; Business Media Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-79ea737d668f64228a1cc99c331c1825cf897f61b6362af9b6248846c1b990f33</citedby><cites>FETCH-LOGICAL-c515t-79ea737d668f64228a1cc99c331c1825cf897f61b6362af9b6248846c1b990f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-011-0166-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-011-0166-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22083659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilderjans, T. F.</creatorcontrib><creatorcontrib>Ceulemans, E.</creatorcontrib><creatorcontrib>Kuppens, P.</creatorcontrib><title>Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different country, regarding a set of test items. When dealing with such data, a key challenge consists of uncovering the differences and similarities between the structural mechanisms that underlie the different blocks. To tackle this challenge for the case of a single data block, one may rely on HICLAS, in which the variables are reduced to a limited set of binary bundles that represent the underlying structural mechanisms, and the objects are given scores for these bundles. In the case of multiple binary data blocks, one may perform HICLAS on each data block separately. However, such an analysis strategy obscures the similarities and, in the case of many data blocks, also the differences between the blocks. To resolve this problem, we proposed the new Clusterwise HICLAS generic modeling strategy. In this strategy, the different data blocks are assumed to form a set of mutually exclusive clusters. For each cluster, different bundles are derived. As such, blocks belonging to the same cluster have the same bundles, whereas blocks of different clusters are modeled with different bundles. Furthermore, we evaluated the performance of Clusterwise HICLAS by means of an extensive simulation study and by applying the strategy to coupled binary data regarding emotion differentiation and regulation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Behavior</subject><subject>Behavioral Science and Psychology</subject><subject>Behavioral Sciences - methods</subject><subject>Behavioral Sciences - statistics &amp; numerical data</subject><subject>Cluster Analysis</subject><subject>Cognitive Psychology</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Data processing</subject><subject>Differentiation</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Factor Analysis, Statistical</subject><subject>Humans</subject><subject>Internet</subject><subject>Mediation</subject><subject>Models, Psychological</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Regression analysis</subject><subject>Research Design</subject><subject>Studies</subject><subject>Variables</subject><issn>1554-3528</issn><issn>1554-351X</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1rFTEUhgex2Fr9AW4k4MbNtJPvxN3lorZwoQt1PWQyJ0NqJqnJDKX_3lymShGEEkJOkuc9OTlv07zD3QWVXF0WTBlRbYdxnUK0-kVzhjlnLeVEvXwSnzavS7ntOqoIZq-aU0I6RQXXZ03ah7UskO99AXR1vT_svn1COzRBhOwtmtMIwccJlSWbBaYHtCRUQwuo-NkHk_3ioSATRzR65yBDtHXvI5rXsPghJPsTDT6a_IBGs5g3zYkzocDbx_W8-fHl8_f9VXu4-Xq93x1ayzFfWqnBSCpHIZQTjBBlsLVaW0qxxYpw65SWTuBBUEGM04MgTCkmLB607hyl583HLe9dTr9WKEs_-2IhBBMhraXHndCkIx2Xz0AxJ0xqiSv64R_0Nq051o9UqiYTWrPj2xcbNZkAvY8uHTtWxwiztymC8_V8JzHDkmvGqwBvAptTKRlcf5f9XFtWs_ZHp_vN6b463R-d7nXVvH8sZR1mGP8q_lhbAbIBpV7FCfLTWv-X9TfAW7Ge</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Wilderjans, T. F.</creator><creator>Ceulemans, E.</creator><creator>Kuppens, P.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>0-V</scope><scope>3V.</scope><scope>4T-</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120601</creationdate><title>Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data</title><author>Wilderjans, T. F. ; Ceulemans, E. ; Kuppens, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-79ea737d668f64228a1cc99c331c1825cf897f61b6362af9b6248846c1b990f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Behavior</topic><topic>Behavioral Science and Psychology</topic><topic>Behavioral Sciences - methods</topic><topic>Behavioral Sciences - statistics &amp; numerical data</topic><topic>Cluster Analysis</topic><topic>Cognitive Psychology</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Data processing</topic><topic>Differentiation</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Factor Analysis, Statistical</topic><topic>Humans</topic><topic>Internet</topic><topic>Mediation</topic><topic>Models, Psychological</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Regression analysis</topic><topic>Research Design</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilderjans, T. F.</creatorcontrib><creatorcontrib>Ceulemans, E.</creatorcontrib><creatorcontrib>Kuppens, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilderjans, T. F.</au><au>Ceulemans, E.</au><au>Kuppens, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>44</volume><issue>2</issue><spage>532</spage><epage>545</epage><pages>532-545</pages><issn>1554-3528</issn><issn>1554-351X</issn><eissn>1554-3528</eissn><abstract>In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different country, regarding a set of test items. When dealing with such data, a key challenge consists of uncovering the differences and similarities between the structural mechanisms that underlie the different blocks. To tackle this challenge for the case of a single data block, one may rely on HICLAS, in which the variables are reduced to a limited set of binary bundles that represent the underlying structural mechanisms, and the objects are given scores for these bundles. In the case of multiple binary data blocks, one may perform HICLAS on each data block separately. However, such an analysis strategy obscures the similarities and, in the case of many data blocks, also the differences between the blocks. To resolve this problem, we proposed the new Clusterwise HICLAS generic modeling strategy. In this strategy, the different data blocks are assumed to form a set of mutually exclusive clusters. For each cluster, different bundles are derived. As such, blocks belonging to the same cluster have the same bundles, whereas blocks of different clusters are modeled with different bundles. Furthermore, we evaluated the performance of Clusterwise HICLAS by means of an extensive simulation study and by applying the strategy to coupled binary data regarding emotion differentiation and regulation.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22083659</pmid><doi>10.3758/s13428-011-0166-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior Research Methods, 2012-06, Vol.44 (2), p.532-545
issn 1554-3528
1554-351X
1554-3528
language eng
recordid cdi_proquest_miscellaneous_1069202057
source MEDLINE; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Analysis
Behavior
Behavioral Science and Psychology
Behavioral Sciences - methods
Behavioral Sciences - statistics & numerical data
Cluster Analysis
Cognitive Psychology
Computer Simulation
Data Interpretation, Statistical
Data processing
Differentiation
Emotions
Emotions - physiology
Factor Analysis, Statistical
Humans
Internet
Mediation
Models, Psychological
Models, Statistical
Psychology
Regression analysis
Research Design
Studies
Variables
title Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clusterwise%20HICLAS:%20A%20generic%20modeling%20strategy%20to%20trace%20similarities%20and%20differences%20in%20multiblock%20binary%20data&rft.jtitle=Behavior%20Research%20Methods&rft.au=Wilderjans,%20T.%20F.&rft.date=2012-06-01&rft.volume=44&rft.issue=2&rft.spage=532&rft.epage=545&rft.pages=532-545&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-011-0166-9&rft_dat=%3Cgale_proqu%3EA714175945%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020569943&rft_id=info:pmid/22083659&rft_galeid=A714175945&rfr_iscdi=true