Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation
A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six u...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2012-08, Vol.39 (8), p.1199-1208 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1208 |
---|---|
container_issue | 8 |
container_start_page | 1199 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 39 |
creator | Xu, Jianlin Qian, Yueming Skonezny, Paul M You, Li Xing, Zizhuo Meyers, David S Stankavage, Robert J Pan, Shih-Hsie Li, Zheng Jian |
description | A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations. |
doi_str_mv | 10.1007/s10295-012-1127-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069197330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1030080698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</originalsourceid><addsrcrecordid>eNqNkt9qFTEQxhdRbK0-gDcaEMGb1GSy2Zy9LKX-gaKg9nrJZic9KbvJMclSztP4qma7pyqC4NUMM7_5ZsiXqnrO2SlnTL1NnEErKeNAOQdFNw-qY16rhkop5MOSi0ZRWQt5VD1J6YYxJpWCx9URgIRGCH5c_fiCw2yyC54ESz7RjHFyXo9kwrwt1f2o75q3Wzcicd5E1Mn5a5JdQUm_J2O4xbhUyoTuw-gM0X4guxgyOr_E-wVRZ0xFg1ycElNAouccqPOljwOxONBeZ7MtWZzQ57vFT6tHVo8Jnx3iSXX17uLb-Qd6-fn9x_OzS2okg0wVgmZ1jdDonlmNG9MK0TeC9T3jRqjaohXGDFIB8qFtma0bhgNq2SqUZhAn1ZtVt9z7fcaUu8klg-OoPYY5dZw1LW-VEOw_UMHYpvCbgr76C70JcyzPu1KctwCiUHylTAwpRbTdLrpJx32BusXobjW6K0Z3i9HdovzioDz3Ew6_Ju6dLcDrA6CT0aON2huXfnMNcAAFhYOVS7vFRYx_nvjv7S_XIatDp69jEb76CozXyxcDAbX4CeqVy7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030119223</pqid></control><display><type>article</type><title>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Jianlin ; Qian, Yueming ; Skonezny, Paul M ; You, Li ; Xing, Zizhuo ; Meyers, David S ; Stankavage, Robert J ; Pan, Shih-Hsie ; Li, Zheng Jian</creator><creatorcontrib>Xu, Jianlin ; Qian, Yueming ; Skonezny, Paul M ; You, Li ; Xing, Zizhuo ; Meyers, David S ; Stankavage, Robert J ; Pan, Shih-Hsie ; Li, Zheng Jian</creatorcontrib><description>A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-012-1127-8</identifier><identifier>PMID: 22526331</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amino acids ; batch fermentation ; Biochemistry ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Bioreactors ; Biotechnology ; Cell culture ; Cell Culture and Bioengineering ; Cloning ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; galactose ; Galactose - metabolism ; Genetic Engineering ; Glucose ; Glucose - metabolism ; Glycerol ; High temperature ; inclusion bodies ; Inclusion Bodies - genetics ; Inclusion Bodies - metabolism ; Inorganic Chemistry ; Isopropyl Thiogalactoside ; Life Sciences ; Manufacturing ; Metabolism ; Metabolites ; Methionine - metabolism ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microbiology ; Optimization techniques ; Protein expression ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Recombinant Proteins - therapeutic use ; Studies ; Yeast</subject><ispartof>Journal of industrial microbiology & biotechnology, 2012-08, Vol.39 (8), p.1199-1208</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</citedby><cites>FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-012-1127-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-012-1127-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26212272$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22526331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jianlin</creatorcontrib><creatorcontrib>Qian, Yueming</creatorcontrib><creatorcontrib>Skonezny, Paul M</creatorcontrib><creatorcontrib>You, Li</creatorcontrib><creatorcontrib>Xing, Zizhuo</creatorcontrib><creatorcontrib>Meyers, David S</creatorcontrib><creatorcontrib>Stankavage, Robert J</creatorcontrib><creatorcontrib>Pan, Shih-Hsie</creatorcontrib><creatorcontrib>Li, Zheng Jian</creatorcontrib><title>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.</description><subject>Amino acids</subject><subject>batch fermentation</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Culture and Bioengineering</subject><subject>Cloning</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>galactose</subject><subject>Galactose - metabolism</subject><subject>Genetic Engineering</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycerol</subject><subject>High temperature</subject><subject>inclusion bodies</subject><subject>Inclusion Bodies - genetics</subject><subject>Inclusion Bodies - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Isopropyl Thiogalactoside</subject><subject>Life Sciences</subject><subject>Manufacturing</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbiology</subject><subject>Optimization techniques</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Studies</subject><subject>Yeast</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt9qFTEQxhdRbK0-gDcaEMGb1GSy2Zy9LKX-gaKg9nrJZic9KbvJMclSztP4qma7pyqC4NUMM7_5ZsiXqnrO2SlnTL1NnEErKeNAOQdFNw-qY16rhkop5MOSi0ZRWQt5VD1J6YYxJpWCx9URgIRGCH5c_fiCw2yyC54ESz7RjHFyXo9kwrwt1f2o75q3Wzcicd5E1Mn5a5JdQUm_J2O4xbhUyoTuw-gM0X4guxgyOr_E-wVRZ0xFg1ycElNAouccqPOljwOxONBeZ7MtWZzQ57vFT6tHVo8Jnx3iSXX17uLb-Qd6-fn9x_OzS2okg0wVgmZ1jdDonlmNG9MK0TeC9T3jRqjaohXGDFIB8qFtma0bhgNq2SqUZhAn1ZtVt9z7fcaUu8klg-OoPYY5dZw1LW-VEOw_UMHYpvCbgr76C70JcyzPu1KctwCiUHylTAwpRbTdLrpJx32BusXobjW6K0Z3i9HdovzioDz3Ew6_Ju6dLcDrA6CT0aON2huXfnMNcAAFhYOVS7vFRYx_nvjv7S_XIatDp69jEb76CozXyxcDAbX4CeqVy7I</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Xu, Jianlin</creator><creator>Qian, Yueming</creator><creator>Skonezny, Paul M</creator><creator>You, Li</creator><creator>Xing, Zizhuo</creator><creator>Meyers, David S</creator><creator>Stankavage, Robert J</creator><creator>Pan, Shih-Hsie</creator><creator>Li, Zheng Jian</creator><general>Springer-Verlag</general><general>Springer</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20120801</creationdate><title>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</title><author>Xu, Jianlin ; Qian, Yueming ; Skonezny, Paul M ; You, Li ; Xing, Zizhuo ; Meyers, David S ; Stankavage, Robert J ; Pan, Shih-Hsie ; Li, Zheng Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino acids</topic><topic>batch fermentation</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Culture and Bioengineering</topic><topic>Cloning</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>galactose</topic><topic>Galactose - metabolism</topic><topic>Genetic Engineering</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycerol</topic><topic>High temperature</topic><topic>inclusion bodies</topic><topic>Inclusion Bodies - genetics</topic><topic>Inclusion Bodies - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Isopropyl Thiogalactoside</topic><topic>Life Sciences</topic><topic>Manufacturing</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbiology</topic><topic>Optimization techniques</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Studies</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jianlin</creatorcontrib><creatorcontrib>Qian, Yueming</creatorcontrib><creatorcontrib>Skonezny, Paul M</creatorcontrib><creatorcontrib>You, Li</creatorcontrib><creatorcontrib>Xing, Zizhuo</creatorcontrib><creatorcontrib>Meyers, David S</creatorcontrib><creatorcontrib>Stankavage, Robert J</creatorcontrib><creatorcontrib>Pan, Shih-Hsie</creatorcontrib><creatorcontrib>Li, Zheng Jian</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jianlin</au><au>Qian, Yueming</au><au>Skonezny, Paul M</au><au>You, Li</au><au>Xing, Zizhuo</au><au>Meyers, David S</au><au>Stankavage, Robert J</au><au>Pan, Shih-Hsie</au><au>Li, Zheng Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>39</volume><issue>8</issue><spage>1199</spage><epage>1208</epage><pages>1199-1208</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22526331</pmid><doi>10.1007/s10295-012-1127-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2012-08, Vol.39 (8), p.1199-1208 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_1069197330 |
source | Oxford Journals Open Access Collection; MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino acids batch fermentation Biochemistry Bioinformatics Biological and medical sciences Biomedical and Life Sciences Bioreactors Biotechnology Cell culture Cell Culture and Bioengineering Cloning E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fermentation Fundamental and applied biological sciences. Psychology galactose Galactose - metabolism Genetic Engineering Glucose Glucose - metabolism Glycerol High temperature inclusion bodies Inclusion Bodies - genetics Inclusion Bodies - metabolism Inorganic Chemistry Isopropyl Thiogalactoside Life Sciences Manufacturing Metabolism Metabolites Methionine - metabolism Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Microbiology Optimization techniques Protein expression Proteins Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Recombinant Proteins - metabolism Recombinant Proteins - therapeutic use Studies Yeast |
title | Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20N-terminal%20methionylation%20while%20increasing%20titer%20by%20lowering%20metabolic%20and%20protein%20production%20rates%20in%20E.%20coli%20auto-induced%20fed-batch%20fermentation&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Xu,%20Jianlin&rft.date=2012-08-01&rft.volume=39&rft.issue=8&rft.spage=1199&rft.epage=1208&rft.pages=1199-1208&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-012-1127-8&rft_dat=%3Cproquest_cross%3E1030080698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030119223&rft_id=info:pmid/22526331&rfr_iscdi=true |