Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation

A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2012-08, Vol.39 (8), p.1199-1208
Hauptverfasser: Xu, Jianlin, Qian, Yueming, Skonezny, Paul M, You, Li, Xing, Zizhuo, Meyers, David S, Stankavage, Robert J, Pan, Shih-Hsie, Li, Zheng Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 8
container_start_page 1199
container_title Journal of industrial microbiology & biotechnology
container_volume 39
creator Xu, Jianlin
Qian, Yueming
Skonezny, Paul M
You, Li
Xing, Zizhuo
Meyers, David S
Stankavage, Robert J
Pan, Shih-Hsie
Li, Zheng Jian
description A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.
doi_str_mv 10.1007/s10295-012-1127-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069197330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1030080698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</originalsourceid><addsrcrecordid>eNqNkt9qFTEQxhdRbK0-gDcaEMGb1GSy2Zy9LKX-gaKg9nrJZic9KbvJMclSztP4qma7pyqC4NUMM7_5ZsiXqnrO2SlnTL1NnEErKeNAOQdFNw-qY16rhkop5MOSi0ZRWQt5VD1J6YYxJpWCx9URgIRGCH5c_fiCw2yyC54ESz7RjHFyXo9kwrwt1f2o75q3Wzcicd5E1Mn5a5JdQUm_J2O4xbhUyoTuw-gM0X4guxgyOr_E-wVRZ0xFg1ycElNAouccqPOljwOxONBeZ7MtWZzQ57vFT6tHVo8Jnx3iSXX17uLb-Qd6-fn9x_OzS2okg0wVgmZ1jdDonlmNG9MK0TeC9T3jRqjaohXGDFIB8qFtma0bhgNq2SqUZhAn1ZtVt9z7fcaUu8klg-OoPYY5dZw1LW-VEOw_UMHYpvCbgr76C70JcyzPu1KctwCiUHylTAwpRbTdLrpJx32BusXobjW6K0Z3i9HdovzioDz3Ew6_Ju6dLcDrA6CT0aON2huXfnMNcAAFhYOVS7vFRYx_nvjv7S_XIatDp69jEb76CozXyxcDAbX4CeqVy7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030119223</pqid></control><display><type>article</type><title>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Jianlin ; Qian, Yueming ; Skonezny, Paul M ; You, Li ; Xing, Zizhuo ; Meyers, David S ; Stankavage, Robert J ; Pan, Shih-Hsie ; Li, Zheng Jian</creator><creatorcontrib>Xu, Jianlin ; Qian, Yueming ; Skonezny, Paul M ; You, Li ; Xing, Zizhuo ; Meyers, David S ; Stankavage, Robert J ; Pan, Shih-Hsie ; Li, Zheng Jian</creatorcontrib><description>A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-012-1127-8</identifier><identifier>PMID: 22526331</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amino acids ; batch fermentation ; Biochemistry ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Bioreactors ; Biotechnology ; Cell culture ; Cell Culture and Bioengineering ; Cloning ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; galactose ; Galactose - metabolism ; Genetic Engineering ; Glucose ; Glucose - metabolism ; Glycerol ; High temperature ; inclusion bodies ; Inclusion Bodies - genetics ; Inclusion Bodies - metabolism ; Inorganic Chemistry ; Isopropyl Thiogalactoside ; Life Sciences ; Manufacturing ; Metabolism ; Metabolites ; Methionine - metabolism ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microbiology ; Optimization techniques ; Protein expression ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Recombinant Proteins - therapeutic use ; Studies ; Yeast</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2012-08, Vol.39 (8), p.1199-1208</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</citedby><cites>FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-012-1127-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-012-1127-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26212272$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22526331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jianlin</creatorcontrib><creatorcontrib>Qian, Yueming</creatorcontrib><creatorcontrib>Skonezny, Paul M</creatorcontrib><creatorcontrib>You, Li</creatorcontrib><creatorcontrib>Xing, Zizhuo</creatorcontrib><creatorcontrib>Meyers, David S</creatorcontrib><creatorcontrib>Stankavage, Robert J</creatorcontrib><creatorcontrib>Pan, Shih-Hsie</creatorcontrib><creatorcontrib>Li, Zheng Jian</creatorcontrib><title>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.</description><subject>Amino acids</subject><subject>batch fermentation</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Culture and Bioengineering</subject><subject>Cloning</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>galactose</subject><subject>Galactose - metabolism</subject><subject>Genetic Engineering</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycerol</subject><subject>High temperature</subject><subject>inclusion bodies</subject><subject>Inclusion Bodies - genetics</subject><subject>Inclusion Bodies - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Isopropyl Thiogalactoside</subject><subject>Life Sciences</subject><subject>Manufacturing</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbiology</subject><subject>Optimization techniques</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Studies</subject><subject>Yeast</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt9qFTEQxhdRbK0-gDcaEMGb1GSy2Zy9LKX-gaKg9nrJZic9KbvJMclSztP4qma7pyqC4NUMM7_5ZsiXqnrO2SlnTL1NnEErKeNAOQdFNw-qY16rhkop5MOSi0ZRWQt5VD1J6YYxJpWCx9URgIRGCH5c_fiCw2yyC54ESz7RjHFyXo9kwrwt1f2o75q3Wzcicd5E1Mn5a5JdQUm_J2O4xbhUyoTuw-gM0X4guxgyOr_E-wVRZ0xFg1ycElNAouccqPOljwOxONBeZ7MtWZzQ57vFT6tHVo8Jnx3iSXX17uLb-Qd6-fn9x_OzS2okg0wVgmZ1jdDonlmNG9MK0TeC9T3jRqjaohXGDFIB8qFtma0bhgNq2SqUZhAn1ZtVt9z7fcaUu8klg-OoPYY5dZw1LW-VEOw_UMHYpvCbgr76C70JcyzPu1KctwCiUHylTAwpRbTdLrpJx32BusXobjW6K0Z3i9HdovzioDz3Ew6_Ju6dLcDrA6CT0aON2huXfnMNcAAFhYOVS7vFRYx_nvjv7S_XIatDp69jEb76CozXyxcDAbX4CeqVy7I</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Xu, Jianlin</creator><creator>Qian, Yueming</creator><creator>Skonezny, Paul M</creator><creator>You, Li</creator><creator>Xing, Zizhuo</creator><creator>Meyers, David S</creator><creator>Stankavage, Robert J</creator><creator>Pan, Shih-Hsie</creator><creator>Li, Zheng Jian</creator><general>Springer-Verlag</general><general>Springer</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20120801</creationdate><title>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</title><author>Xu, Jianlin ; Qian, Yueming ; Skonezny, Paul M ; You, Li ; Xing, Zizhuo ; Meyers, David S ; Stankavage, Robert J ; Pan, Shih-Hsie ; Li, Zheng Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-7e2a044e26ab0fae8c933b630bb01c374fef3ccd572e1d990f460edea597e5cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino acids</topic><topic>batch fermentation</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Culture and Bioengineering</topic><topic>Cloning</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>galactose</topic><topic>Galactose - metabolism</topic><topic>Genetic Engineering</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycerol</topic><topic>High temperature</topic><topic>inclusion bodies</topic><topic>Inclusion Bodies - genetics</topic><topic>Inclusion Bodies - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Isopropyl Thiogalactoside</topic><topic>Life Sciences</topic><topic>Manufacturing</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbiology</topic><topic>Optimization techniques</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Studies</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jianlin</creatorcontrib><creatorcontrib>Qian, Yueming</creatorcontrib><creatorcontrib>Skonezny, Paul M</creatorcontrib><creatorcontrib>You, Li</creatorcontrib><creatorcontrib>Xing, Zizhuo</creatorcontrib><creatorcontrib>Meyers, David S</creatorcontrib><creatorcontrib>Stankavage, Robert J</creatorcontrib><creatorcontrib>Pan, Shih-Hsie</creatorcontrib><creatorcontrib>Li, Zheng Jian</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jianlin</au><au>Qian, Yueming</au><au>Skonezny, Paul M</au><au>You, Li</au><au>Xing, Zizhuo</au><au>Meyers, David S</au><au>Stankavage, Robert J</au><au>Pan, Shih-Hsie</au><au>Li, Zheng Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>39</volume><issue>8</issue><spage>1199</spage><epage>1208</epage><pages>1199-1208</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>A standard fed-batch fermentation process using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22526331</pmid><doi>10.1007/s10295-012-1127-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2012-08, Vol.39 (8), p.1199-1208
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_1069197330
source Oxford Journals Open Access Collection; MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amino acids
batch fermentation
Biochemistry
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Bioreactors
Biotechnology
Cell culture
Cell Culture and Bioengineering
Cloning
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Fermentation
Fundamental and applied biological sciences. Psychology
galactose
Galactose - metabolism
Genetic Engineering
Glucose
Glucose - metabolism
Glycerol
High temperature
inclusion bodies
Inclusion Bodies - genetics
Inclusion Bodies - metabolism
Inorganic Chemistry
Isopropyl Thiogalactoside
Life Sciences
Manufacturing
Metabolism
Metabolites
Methionine - metabolism
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microbiology
Optimization techniques
Protein expression
Proteins
Recombinant Proteins - biosynthesis
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Recombinant Proteins - therapeutic use
Studies
Yeast
title Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20N-terminal%20methionylation%20while%20increasing%20titer%20by%20lowering%20metabolic%20and%20protein%20production%20rates%20in%20E.%20coli%20auto-induced%20fed-batch%20fermentation&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Xu,%20Jianlin&rft.date=2012-08-01&rft.volume=39&rft.issue=8&rft.spage=1199&rft.epage=1208&rft.pages=1199-1208&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-012-1127-8&rft_dat=%3Cproquest_cross%3E1030080698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030119223&rft_id=info:pmid/22526331&rfr_iscdi=true