Global 60 km simulations with CCAM: evaluation over the tropics

A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SST...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2012-08, Vol.39 (3-4), p.637-654
Hauptverfasser: Nguyen, Kim C., Katzfey, Jack J., McGregor, John L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 654
container_issue 3-4
container_start_page 637
container_title Climate dynamics
container_volume 39
creator Nguyen, Kim C.
Katzfey, Jack J.
McGregor, John L.
description A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.
doi_str_mv 10.1007/s00382-011-1197-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069197139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A306241346</galeid><sourcerecordid>A306241346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhhtRcFx9AG8Nouih16STdNKeHAZdF1YE3XuoySQzWdOdMZVe9W18Fp_MzPYiO4LkEKj6_uKvv6rqKSWnlBD5Gglhqm0IpQ2lvWzUvWpBOSsV1fP71YL0jDRSSPGweoR4RQjlnWwX1duzENcQ6o78_vV1qNEPU4Ds44j1d5939Wq1_PimttcQpptyHa9tqvPO1jnFvTf4uHrgIKB9cvufVJfv312uPjQXn87OV8uLxnDFcrMxneWdE8RQCY47cEoY4YTdtGrthOs3FFRfvBJB11yBWYOAlrLesV5Kxk6ql_PYfYrfJotZDx6NDQFGGyfUlHR92bsICvrsH_QqTmks5grFSkJKcFmo05naQrDajy7mBKa8jR28iaN1vtSXjHQtp4x3RfDqSFCYbH_kLUyI-vzL52P2xR12ZyHkHcYw3QR7DNIZNCkiJuv0PvkB0s9iVR8Oq-fD6mJbHw6rVdE8v90P0EBwCUbj8a-w7VqiqDjk0M4clta4teluDv8b_gcIcK8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030118547</pqid></control><display><type>article</type><title>Global 60 km simulations with CCAM: evaluation over the tropics</title><source>SpringerLink Journals</source><creator>Nguyen, Kim C. ; Katzfey, Jack J. ; McGregor, John L.</creator><creatorcontrib>Nguyen, Kim C. ; Katzfey, Jack J. ; McGregor, John L.</creatorcontrib><description>A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-011-1197-8</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atmospheric circulation ; Atmospheric models ; Climate change ; Climate models ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; El Nino ; Exact sciences and technology ; External geophysics ; Geophysics/Geodesy ; Global climate ; Intergovernmental Panel on Climate Change ; Marine ; Meteorology ; Ocean-atmosphere interaction ; Oceanography ; Sea surface temperature ; Southern Oscillation ; Tropical environments</subject><ispartof>Climate dynamics, 2012-08, Vol.39 (3-4), p.637-654</ispartof><rights>Springer-Verlag 2011</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</citedby><cites>FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-011-1197-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-011-1197-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26208159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Kim C.</creatorcontrib><creatorcontrib>Katzfey, Jack J.</creatorcontrib><creatorcontrib>McGregor, John L.</creatorcontrib><title>Global 60 km simulations with CCAM: evaluation over the tropics</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.</description><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Global climate</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceanography</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Tropical environments</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kcGKFDEQhhtRcFx9AG8Nouih16STdNKeHAZdF1YE3XuoySQzWdOdMZVe9W18Fp_MzPYiO4LkEKj6_uKvv6rqKSWnlBD5Gglhqm0IpQ2lvWzUvWpBOSsV1fP71YL0jDRSSPGweoR4RQjlnWwX1duzENcQ6o78_vV1qNEPU4Ds44j1d5939Wq1_PimttcQpptyHa9tqvPO1jnFvTf4uHrgIKB9cvufVJfv312uPjQXn87OV8uLxnDFcrMxneWdE8RQCY47cEoY4YTdtGrthOs3FFRfvBJB11yBWYOAlrLesV5Kxk6ql_PYfYrfJotZDx6NDQFGGyfUlHR92bsICvrsH_QqTmks5grFSkJKcFmo05naQrDajy7mBKa8jR28iaN1vtSXjHQtp4x3RfDqSFCYbH_kLUyI-vzL52P2xR12ZyHkHcYw3QR7DNIZNCkiJuv0PvkB0s9iVR8Oq-fD6mJbHw6rVdE8v90P0EBwCUbj8a-w7VqiqDjk0M4clta4teluDv8b_gcIcK8c</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Nguyen, Kim C.</creator><creator>Katzfey, Jack J.</creator><creator>McGregor, John L.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20120801</creationdate><title>Global 60 km simulations with CCAM: evaluation over the tropics</title><author>Nguyen, Kim C. ; Katzfey, Jack J. ; McGregor, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Global climate</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceanography</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Kim C.</creatorcontrib><creatorcontrib>Katzfey, Jack J.</creatorcontrib><creatorcontrib>McGregor, John L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Kim C.</au><au>Katzfey, Jack J.</au><au>McGregor, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global 60 km simulations with CCAM: evaluation over the tropics</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>39</volume><issue>3-4</issue><spage>637</spage><epage>654</epage><pages>637-654</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-011-1197-8</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2012-08, Vol.39 (3-4), p.637-654
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_1069197139
source SpringerLink Journals
subjects Atmospheric circulation
Atmospheric models
Climate change
Climate models
Climatology
Climatology. Bioclimatology. Climate change
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
El Nino
Exact sciences and technology
External geophysics
Geophysics/Geodesy
Global climate
Intergovernmental Panel on Climate Change
Marine
Meteorology
Ocean-atmosphere interaction
Oceanography
Sea surface temperature
Southern Oscillation
Tropical environments
title Global 60 km simulations with CCAM: evaluation over the tropics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%2060%C2%A0km%20simulations%20with%20CCAM:%20evaluation%20over%20the%20tropics&rft.jtitle=Climate%20dynamics&rft.au=Nguyen,%20Kim%20C.&rft.date=2012-08-01&rft.volume=39&rft.issue=3-4&rft.spage=637&rft.epage=654&rft.pages=637-654&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-011-1197-8&rft_dat=%3Cgale_proqu%3EA306241346%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030118547&rft_id=info:pmid/&rft_galeid=A306241346&rfr_iscdi=true