Global 60 km simulations with CCAM: evaluation over the tropics
A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SST...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2012-08, Vol.39 (3-4), p.637-654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 654 |
---|---|
container_issue | 3-4 |
container_start_page | 637 |
container_title | Climate dynamics |
container_volume | 39 |
creator | Nguyen, Kim C. Katzfey, Jack J. McGregor, John L. |
description | A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated. |
doi_str_mv | 10.1007/s00382-011-1197-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1069197139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A306241346</galeid><sourcerecordid>A306241346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhhtRcFx9AG8Nouih16STdNKeHAZdF1YE3XuoySQzWdOdMZVe9W18Fp_MzPYiO4LkEKj6_uKvv6rqKSWnlBD5Gglhqm0IpQ2lvWzUvWpBOSsV1fP71YL0jDRSSPGweoR4RQjlnWwX1duzENcQ6o78_vV1qNEPU4Ds44j1d5939Wq1_PimttcQpptyHa9tqvPO1jnFvTf4uHrgIKB9cvufVJfv312uPjQXn87OV8uLxnDFcrMxneWdE8RQCY47cEoY4YTdtGrthOs3FFRfvBJB11yBWYOAlrLesV5Kxk6ql_PYfYrfJotZDx6NDQFGGyfUlHR92bsICvrsH_QqTmks5grFSkJKcFmo05naQrDajy7mBKa8jR28iaN1vtSXjHQtp4x3RfDqSFCYbH_kLUyI-vzL52P2xR12ZyHkHcYw3QR7DNIZNCkiJuv0PvkB0s9iVR8Oq-fD6mJbHw6rVdE8v90P0EBwCUbj8a-w7VqiqDjk0M4clta4teluDv8b_gcIcK8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030118547</pqid></control><display><type>article</type><title>Global 60 km simulations with CCAM: evaluation over the tropics</title><source>SpringerLink Journals</source><creator>Nguyen, Kim C. ; Katzfey, Jack J. ; McGregor, John L.</creator><creatorcontrib>Nguyen, Kim C. ; Katzfey, Jack J. ; McGregor, John L.</creatorcontrib><description>A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-011-1197-8</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atmospheric circulation ; Atmospheric models ; Climate change ; Climate models ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; El Nino ; Exact sciences and technology ; External geophysics ; Geophysics/Geodesy ; Global climate ; Intergovernmental Panel on Climate Change ; Marine ; Meteorology ; Ocean-atmosphere interaction ; Oceanography ; Sea surface temperature ; Southern Oscillation ; Tropical environments</subject><ispartof>Climate dynamics, 2012-08, Vol.39 (3-4), p.637-654</ispartof><rights>Springer-Verlag 2011</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</citedby><cites>FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-011-1197-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-011-1197-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26208159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Kim C.</creatorcontrib><creatorcontrib>Katzfey, Jack J.</creatorcontrib><creatorcontrib>McGregor, John L.</creatorcontrib><title>Global 60 km simulations with CCAM: evaluation over the tropics</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.</description><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Global climate</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceanography</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Tropical environments</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kcGKFDEQhhtRcFx9AG8Nouih16STdNKeHAZdF1YE3XuoySQzWdOdMZVe9W18Fp_MzPYiO4LkEKj6_uKvv6rqKSWnlBD5Gglhqm0IpQ2lvWzUvWpBOSsV1fP71YL0jDRSSPGweoR4RQjlnWwX1duzENcQ6o78_vV1qNEPU4Ds44j1d5939Wq1_PimttcQpptyHa9tqvPO1jnFvTf4uHrgIKB9cvufVJfv312uPjQXn87OV8uLxnDFcrMxneWdE8RQCY47cEoY4YTdtGrthOs3FFRfvBJB11yBWYOAlrLesV5Kxk6ql_PYfYrfJotZDx6NDQFGGyfUlHR92bsICvrsH_QqTmks5grFSkJKcFmo05naQrDajy7mBKa8jR28iaN1vtSXjHQtp4x3RfDqSFCYbH_kLUyI-vzL52P2xR12ZyHkHcYw3QR7DNIZNCkiJuv0PvkB0s9iVR8Oq-fD6mJbHw6rVdE8v90P0EBwCUbj8a-w7VqiqDjk0M4clta4teluDv8b_gcIcK8c</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Nguyen, Kim C.</creator><creator>Katzfey, Jack J.</creator><creator>McGregor, John L.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20120801</creationdate><title>Global 60 km simulations with CCAM: evaluation over the tropics</title><author>Nguyen, Kim C. ; Katzfey, Jack J. ; McGregor, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-dc6e46f50c17af4faf85c5f5ed28bf5f9d1a89894051b48acba5a2139f397733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Global climate</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceanography</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Kim C.</creatorcontrib><creatorcontrib>Katzfey, Jack J.</creatorcontrib><creatorcontrib>McGregor, John L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Kim C.</au><au>Katzfey, Jack J.</au><au>McGregor, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global 60 km simulations with CCAM: evaluation over the tropics</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>39</volume><issue>3-4</issue><spage>637</spage><epage>654</epage><pages>637-654</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>A six-member ensemble of 60 km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Niño Southern Oscillation and the Walker circulation, is also evaluated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-011-1197-8</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2012-08, Vol.39 (3-4), p.637-654 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1069197139 |
source | SpringerLink Journals |
subjects | Atmospheric circulation Atmospheric models Climate change Climate models Climatology Climatology. Bioclimatology. Climate change Earth and Environmental Science Earth Sciences Earth, ocean, space El Nino Exact sciences and technology External geophysics Geophysics/Geodesy Global climate Intergovernmental Panel on Climate Change Marine Meteorology Ocean-atmosphere interaction Oceanography Sea surface temperature Southern Oscillation Tropical environments |
title | Global 60 km simulations with CCAM: evaluation over the tropics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%2060%C2%A0km%20simulations%20with%20CCAM:%20evaluation%20over%20the%20tropics&rft.jtitle=Climate%20dynamics&rft.au=Nguyen,%20Kim%20C.&rft.date=2012-08-01&rft.volume=39&rft.issue=3-4&rft.spage=637&rft.epage=654&rft.pages=637-654&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-011-1197-8&rft_dat=%3Cgale_proqu%3EA306241346%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030118547&rft_id=info:pmid/&rft_galeid=A306241346&rfr_iscdi=true |