Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array

The optical properties and surface‐enhanced Raman scattering (SERS) of plasmonic nanodome array (PNA) substrates in air and aqueous solution are investigated. PNA substrates are inexpensively and uniformly fabricated with a hot spot density of 6.25 × 106 mm−2 using a large‐area nanoreplica moulding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2012-09, Vol.8 (18), p.2878-2885
Hauptverfasser: Wu, Hsin-Yu, Choi, Charles J., Cunningham, Brian T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2885
container_issue 18
container_start_page 2878
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 8
creator Wu, Hsin-Yu
Choi, Charles J.
Cunningham, Brian T.
description The optical properties and surface‐enhanced Raman scattering (SERS) of plasmonic nanodome array (PNA) substrates in air and aqueous solution are investigated. PNA substrates are inexpensively and uniformly fabricated with a hot spot density of 6.25 × 106 mm−2 using a large‐area nanoreplica moulding technique on a flexible plastic substrate. Both experimental measurement and numerical simulation results show that PNAs exhibit a radiative localized surface plasmon resonance (LSPR) due to dipolar coupling between neighboring nanodomes and a non‐radiative surface plasmon resonance (SPR) resulting from the periodic array structure. The high spatial localization of electromagnetic field within the ∼10 nm nanogap together with the spectral alignment between the LSPR and excited and scattered light results in a reliable and reproducible spatially averaged SERS enhancement factor (EF) of 8.51 × 107 for Au‐coated PNAs. The SERS enhancement is sufficient for a wide variety of biological and chemical sensing applications, including detection of common metabolites at physiologically relevant concentrations. Surface‐enhanced Raman scattering (SERS) sensors are integrated in a flow cell for in‐line, real‐time monitoring and detection of a urinary metabolite. The effect of highly confined electromagnetic fields associated with the localized surface plasmon resonance on the analyte molecules present at EM hot spots results in enhanced excitation of Raman vibrational modes and thus in a substantial increase in the SERS intensity.
doi_str_mv 10.1002/smll.201200712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1041142994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1041142994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3832-d0263f93e331119ad609e4f8bc5b9cca87ce7085f6ed6229aeb82b69d2848693</originalsourceid><addsrcrecordid>eNqFkEtP6zAQRi10Ee8tS5Tl3aTY49SJlwhRQJRXC2JpTZwJhJs4xU4F_fekFKq7YzMzi_N9Gh3GDgUfCM7hODR1PQAugPNUwAbbEUrIWGWg_6xvwbfZbgivnEsBSbrFtgFSJYSAHXZ1V2NoWlfZ6AZd-4yz-My9oLNURBNs0EVTi11HvnLP0WNYTowmFFqHrvuKFG1D0Yn3uNhnmyXWgQ6-9x57GJ09nF7E49vzy9OTcWxlJiEuOChZaklS9j9oLBTXlJRZboe5thaz1FLKs2GpqFAAGinPIFe6gCzJlJZ77O-qdubbtzmFzjRVsFTX6KidByN4IkQCWic9Olih1rcheCrNzFcN-kUPmaU_s_Rn1v76wNF39zxvqFjjP8J6QK-A96qmxS91Zno9Hv9fHq-yVejoY51F_8-oVKZD83RzbiZTuB-Onu7NSH4CGFeK_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041142994</pqid></control><display><type>article</type><title>Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array</title><source>Access via Wiley Online Library</source><creator>Wu, Hsin-Yu ; Choi, Charles J. ; Cunningham, Brian T.</creator><creatorcontrib>Wu, Hsin-Yu ; Choi, Charles J. ; Cunningham, Brian T.</creatorcontrib><description>The optical properties and surface‐enhanced Raman scattering (SERS) of plasmonic nanodome array (PNA) substrates in air and aqueous solution are investigated. PNA substrates are inexpensively and uniformly fabricated with a hot spot density of 6.25 × 106 mm−2 using a large‐area nanoreplica moulding technique on a flexible plastic substrate. Both experimental measurement and numerical simulation results show that PNAs exhibit a radiative localized surface plasmon resonance (LSPR) due to dipolar coupling between neighboring nanodomes and a non‐radiative surface plasmon resonance (SPR) resulting from the periodic array structure. The high spatial localization of electromagnetic field within the ∼10 nm nanogap together with the spectral alignment between the LSPR and excited and scattered light results in a reliable and reproducible spatially averaged SERS enhancement factor (EF) of 8.51 × 107 for Au‐coated PNAs. The SERS enhancement is sufficient for a wide variety of biological and chemical sensing applications, including detection of common metabolites at physiologically relevant concentrations. Surface‐enhanced Raman scattering (SERS) sensors are integrated in a flow cell for in‐line, real‐time monitoring and detection of a urinary metabolite. The effect of highly confined electromagnetic fields associated with the localized surface plasmon resonance on the analyte molecules present at EM hot spots results in enhanced excitation of Raman vibrational modes and thus in a substantial increase in the SERS intensity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201200712</identifier><identifier>PMID: 22761112</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>biosensors ; nanodome arrays ; nanostructures ; plasmonics ; surface-enhanced raman spectroscopy</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2012-09, Vol.8 (18), p.2878-2885</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3832-d0263f93e331119ad609e4f8bc5b9cca87ce7085f6ed6229aeb82b69d2848693</citedby><cites>FETCH-LOGICAL-c3832-d0263f93e331119ad609e4f8bc5b9cca87ce7085f6ed6229aeb82b69d2848693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201200712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201200712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22761112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Hsin-Yu</creatorcontrib><creatorcontrib>Choi, Charles J.</creatorcontrib><creatorcontrib>Cunningham, Brian T.</creatorcontrib><title>Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The optical properties and surface‐enhanced Raman scattering (SERS) of plasmonic nanodome array (PNA) substrates in air and aqueous solution are investigated. PNA substrates are inexpensively and uniformly fabricated with a hot spot density of 6.25 × 106 mm−2 using a large‐area nanoreplica moulding technique on a flexible plastic substrate. Both experimental measurement and numerical simulation results show that PNAs exhibit a radiative localized surface plasmon resonance (LSPR) due to dipolar coupling between neighboring nanodomes and a non‐radiative surface plasmon resonance (SPR) resulting from the periodic array structure. The high spatial localization of electromagnetic field within the ∼10 nm nanogap together with the spectral alignment between the LSPR and excited and scattered light results in a reliable and reproducible spatially averaged SERS enhancement factor (EF) of 8.51 × 107 for Au‐coated PNAs. The SERS enhancement is sufficient for a wide variety of biological and chemical sensing applications, including detection of common metabolites at physiologically relevant concentrations. Surface‐enhanced Raman scattering (SERS) sensors are integrated in a flow cell for in‐line, real‐time monitoring and detection of a urinary metabolite. The effect of highly confined electromagnetic fields associated with the localized surface plasmon resonance on the analyte molecules present at EM hot spots results in enhanced excitation of Raman vibrational modes and thus in a substantial increase in the SERS intensity.</description><subject>biosensors</subject><subject>nanodome arrays</subject><subject>nanostructures</subject><subject>plasmonics</subject><subject>surface-enhanced raman spectroscopy</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP6zAQRi10Ee8tS5Tl3aTY49SJlwhRQJRXC2JpTZwJhJs4xU4F_fekFKq7YzMzi_N9Gh3GDgUfCM7hODR1PQAugPNUwAbbEUrIWGWg_6xvwbfZbgivnEsBSbrFtgFSJYSAHXZ1V2NoWlfZ6AZd-4yz-My9oLNURBNs0EVTi11HvnLP0WNYTowmFFqHrvuKFG1D0Yn3uNhnmyXWgQ6-9x57GJ09nF7E49vzy9OTcWxlJiEuOChZaklS9j9oLBTXlJRZboe5thaz1FLKs2GpqFAAGinPIFe6gCzJlJZ77O-qdubbtzmFzjRVsFTX6KidByN4IkQCWic9Olih1rcheCrNzFcN-kUPmaU_s_Rn1v76wNF39zxvqFjjP8J6QK-A96qmxS91Zno9Hv9fHq-yVejoY51F_8-oVKZD83RzbiZTuB-Onu7NSH4CGFeK_w</recordid><startdate>20120924</startdate><enddate>20120924</enddate><creator>Wu, Hsin-Yu</creator><creator>Choi, Charles J.</creator><creator>Cunningham, Brian T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120924</creationdate><title>Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array</title><author>Wu, Hsin-Yu ; Choi, Charles J. ; Cunningham, Brian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3832-d0263f93e331119ad609e4f8bc5b9cca87ce7085f6ed6229aeb82b69d2848693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>biosensors</topic><topic>nanodome arrays</topic><topic>nanostructures</topic><topic>plasmonics</topic><topic>surface-enhanced raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hsin-Yu</creatorcontrib><creatorcontrib>Choi, Charles J.</creatorcontrib><creatorcontrib>Cunningham, Brian T.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hsin-Yu</au><au>Choi, Charles J.</au><au>Cunningham, Brian T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2012-09-24</date><risdate>2012</risdate><volume>8</volume><issue>18</issue><spage>2878</spage><epage>2885</epage><pages>2878-2885</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The optical properties and surface‐enhanced Raman scattering (SERS) of plasmonic nanodome array (PNA) substrates in air and aqueous solution are investigated. PNA substrates are inexpensively and uniformly fabricated with a hot spot density of 6.25 × 106 mm−2 using a large‐area nanoreplica moulding technique on a flexible plastic substrate. Both experimental measurement and numerical simulation results show that PNAs exhibit a radiative localized surface plasmon resonance (LSPR) due to dipolar coupling between neighboring nanodomes and a non‐radiative surface plasmon resonance (SPR) resulting from the periodic array structure. The high spatial localization of electromagnetic field within the ∼10 nm nanogap together with the spectral alignment between the LSPR and excited and scattered light results in a reliable and reproducible spatially averaged SERS enhancement factor (EF) of 8.51 × 107 for Au‐coated PNAs. The SERS enhancement is sufficient for a wide variety of biological and chemical sensing applications, including detection of common metabolites at physiologically relevant concentrations. Surface‐enhanced Raman scattering (SERS) sensors are integrated in a flow cell for in‐line, real‐time monitoring and detection of a urinary metabolite. The effect of highly confined electromagnetic fields associated with the localized surface plasmon resonance on the analyte molecules present at EM hot spots results in enhanced excitation of Raman vibrational modes and thus in a substantial increase in the SERS intensity.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22761112</pmid><doi>10.1002/smll.201200712</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2012-09, Vol.8 (18), p.2878-2885
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1041142994
source Access via Wiley Online Library
subjects biosensors
nanodome arrays
nanostructures
plasmonics
surface-enhanced raman spectroscopy
title Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Nanogap-Enhanced%20Raman%20Scattering%20Using%20a%20Resonant%20Nanodome%20Array&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wu,%20Hsin-Yu&rft.date=2012-09-24&rft.volume=8&rft.issue=18&rft.spage=2878&rft.epage=2885&rft.pages=2878-2885&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201200712&rft_dat=%3Cproquest_cross%3E1041142994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041142994&rft_id=info:pmid/22761112&rfr_iscdi=true