Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres
A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without int...
Gespeichert in:
Veröffentlicht in: | Langmuir 2012-09, Vol.28 (37), p.13452-13458 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13458 |
---|---|
container_issue | 37 |
container_start_page | 13452 |
container_title | Langmuir |
container_volume | 28 |
creator | Chen, Zhe Cui, Zhi-Min Cao, Chang-Yan He, Wei-Dong Jiang, Lei Song, Wei-Guo |
description | A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion. |
doi_str_mv | 10.1021/la3022535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1041141786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1041141786</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-273b4918c2d08936308d4a80bffa6f28e77d0261ed946f9236f233dc653b15fd3</originalsourceid><addsrcrecordid>eNpFkc9u2zAMxoViQ5ulPfQFBl8GZAevkihb1k4LgrUd0DVF_5wN2aIxB7LlSfaK3PYKe8U9SdU2Wy4kQP7w8SNJyCmjnxjl7MxqoJxnkB2QGcs4TbOCyzdkRqWAVIocjsi7EDaUUgVCHZIjzhVVnIsZme6xG9DrcfKY3mIYXB_aX5jcddqPybXunUddj86Hz8mNs9vF9d_ff9rgBu-GrdW1j6FrDX5MV06PaJLl9OU7xr7zbgrpXbvmyaWz1j2-iIXhB3oMx-Rto23Ak12ek4fzr_ery_RqffFttbxKNYAcUy6hEooVNTe0UJADLYzQBa2aRucNL1BKQ3nO0CiRN4pDLAKYOs-gYlljYE4Wr7rR7s8Jw1h2bajRWt1jtFcyKhgTTBZ5RN_v0Knq0JSDb-MJtuW_U0Xgww7Qoda28bqv27DnciioVGrP6TqUGzf5Pm4YJ5XPryr_vwqeAFsZhH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041141786</pqid></control><display><type>article</type><title>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</title><source>MEDLINE</source><source>ACS Publications</source><creator>Chen, Zhe ; Cui, Zhi-Min ; Cao, Chang-Yan ; He, Wei-Dong ; Jiang, Lei ; Song, Wei-Guo</creator><creatorcontrib>Chen, Zhe ; Cui, Zhi-Min ; Cao, Chang-Yan ; He, Wei-Dong ; Jiang, Lei ; Song, Wei-Guo</creatorcontrib><description>A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la3022535</identifier><identifier>PMID: 22909224</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acrylamides - chemistry ; Acrylic Resins ; Catalysis ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Models, Molecular ; Nanospheres - chemistry ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polymers - chemistry ; Porosity ; Porous materials ; Silicon Dioxide - chemistry ; Surface Properties ; Temperature ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2012-09, Vol.28 (37), p.13452-13458</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la3022535$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la3022535$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26380799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22909224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Cui, Zhi-Min</creatorcontrib><creatorcontrib>Cao, Chang-Yan</creatorcontrib><creatorcontrib>He, Wei-Dong</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Song, Wei-Guo</creatorcontrib><title>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.</description><subject>Acrylamides - chemistry</subject><subject>Acrylic Resins</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Molecular</subject><subject>Nanospheres - chemistry</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc9u2zAMxoViQ5ulPfQFBl8GZAevkihb1k4LgrUd0DVF_5wN2aIxB7LlSfaK3PYKe8U9SdU2Wy4kQP7w8SNJyCmjnxjl7MxqoJxnkB2QGcs4TbOCyzdkRqWAVIocjsi7EDaUUgVCHZIjzhVVnIsZme6xG9DrcfKY3mIYXB_aX5jcddqPybXunUddj86Hz8mNs9vF9d_ff9rgBu-GrdW1j6FrDX5MV06PaJLl9OU7xr7zbgrpXbvmyaWz1j2-iIXhB3oMx-Rto23Ak12ek4fzr_ery_RqffFttbxKNYAcUy6hEooVNTe0UJADLYzQBa2aRucNL1BKQ3nO0CiRN4pDLAKYOs-gYlljYE4Wr7rR7s8Jw1h2bajRWt1jtFcyKhgTTBZ5RN_v0Knq0JSDb-MJtuW_U0Xgww7Qoda28bqv27DnciioVGrP6TqUGzf5Pm4YJ5XPryr_vwqeAFsZhH8</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Chen, Zhe</creator><creator>Cui, Zhi-Min</creator><creator>Cao, Chang-Yan</creator><creator>He, Wei-Dong</creator><creator>Jiang, Lei</creator><creator>Song, Wei-Guo</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120918</creationdate><title>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</title><author>Chen, Zhe ; Cui, Zhi-Min ; Cao, Chang-Yan ; He, Wei-Dong ; Jiang, Lei ; Song, Wei-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-273b4918c2d08936308d4a80bffa6f28e77d0261ed946f9236f233dc653b15fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acrylamides - chemistry</topic><topic>Acrylic Resins</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Molecular</topic><topic>Nanospheres - chemistry</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Cui, Zhi-Min</creatorcontrib><creatorcontrib>Cao, Chang-Yan</creatorcontrib><creatorcontrib>He, Wei-Dong</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Song, Wei-Guo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhe</au><au>Cui, Zhi-Min</au><au>Cao, Chang-Yan</au><au>He, Wei-Dong</au><au>Jiang, Lei</au><au>Song, Wei-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>28</volume><issue>37</issue><spage>13452</spage><epage>13458</epage><pages>13452-13458</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22909224</pmid><doi>10.1021/la3022535</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2012-09, Vol.28 (37), p.13452-13458 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1041141786 |
source | MEDLINE; ACS Publications |
subjects | Acrylamides - chemistry Acrylic Resins Catalysis Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Gold - chemistry Metal Nanoparticles - chemistry Models, Molecular Nanospheres - chemistry Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Polymers - chemistry Porosity Porous materials Silicon Dioxide - chemistry Surface Properties Temperature Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Responsive%20Smart%20Nanoreactors:%20Poly(N%E2%80%91isopropylacrylamide)-Coated%20Au@Mesoporous-SiO2%20Hollow%20Nanospheres&rft.jtitle=Langmuir&rft.au=Chen,%20Zhe&rft.date=2012-09-18&rft.volume=28&rft.issue=37&rft.spage=13452&rft.epage=13458&rft.pages=13452-13458&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la3022535&rft_dat=%3Cproquest_pubme%3E1041141786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041141786&rft_id=info:pmid/22909224&rfr_iscdi=true |