Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres

A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-09, Vol.28 (37), p.13452-13458
Hauptverfasser: Chen, Zhe, Cui, Zhi-Min, Cao, Chang-Yan, He, Wei-Dong, Jiang, Lei, Song, Wei-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13458
container_issue 37
container_start_page 13452
container_title Langmuir
container_volume 28
creator Chen, Zhe
Cui, Zhi-Min
Cao, Chang-Yan
He, Wei-Dong
Jiang, Lei
Song, Wei-Guo
description A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.
doi_str_mv 10.1021/la3022535
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1041141786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1041141786</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-273b4918c2d08936308d4a80bffa6f28e77d0261ed946f9236f233dc653b15fd3</originalsourceid><addsrcrecordid>eNpFkc9u2zAMxoViQ5ulPfQFBl8GZAevkihb1k4LgrUd0DVF_5wN2aIxB7LlSfaK3PYKe8U9SdU2Wy4kQP7w8SNJyCmjnxjl7MxqoJxnkB2QGcs4TbOCyzdkRqWAVIocjsi7EDaUUgVCHZIjzhVVnIsZme6xG9DrcfKY3mIYXB_aX5jcddqPybXunUddj86Hz8mNs9vF9d_ff9rgBu-GrdW1j6FrDX5MV06PaJLl9OU7xr7zbgrpXbvmyaWz1j2-iIXhB3oMx-Rto23Ak12ek4fzr_ery_RqffFttbxKNYAcUy6hEooVNTe0UJADLYzQBa2aRucNL1BKQ3nO0CiRN4pDLAKYOs-gYlljYE4Wr7rR7s8Jw1h2bajRWt1jtFcyKhgTTBZ5RN_v0Knq0JSDb-MJtuW_U0Xgww7Qoda28bqv27DnciioVGrP6TqUGzf5Pm4YJ5XPryr_vwqeAFsZhH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041141786</pqid></control><display><type>article</type><title>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</title><source>MEDLINE</source><source>ACS Publications</source><creator>Chen, Zhe ; Cui, Zhi-Min ; Cao, Chang-Yan ; He, Wei-Dong ; Jiang, Lei ; Song, Wei-Guo</creator><creatorcontrib>Chen, Zhe ; Cui, Zhi-Min ; Cao, Chang-Yan ; He, Wei-Dong ; Jiang, Lei ; Song, Wei-Guo</creatorcontrib><description>A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la3022535</identifier><identifier>PMID: 22909224</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acrylamides - chemistry ; Acrylic Resins ; Catalysis ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Models, Molecular ; Nanospheres - chemistry ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polymers - chemistry ; Porosity ; Porous materials ; Silicon Dioxide - chemistry ; Surface Properties ; Temperature ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2012-09, Vol.28 (37), p.13452-13458</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la3022535$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la3022535$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26380799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22909224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Cui, Zhi-Min</creatorcontrib><creatorcontrib>Cao, Chang-Yan</creatorcontrib><creatorcontrib>He, Wei-Dong</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Song, Wei-Guo</creatorcontrib><title>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.</description><subject>Acrylamides - chemistry</subject><subject>Acrylic Resins</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Molecular</subject><subject>Nanospheres - chemistry</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc9u2zAMxoViQ5ulPfQFBl8GZAevkihb1k4LgrUd0DVF_5wN2aIxB7LlSfaK3PYKe8U9SdU2Wy4kQP7w8SNJyCmjnxjl7MxqoJxnkB2QGcs4TbOCyzdkRqWAVIocjsi7EDaUUgVCHZIjzhVVnIsZme6xG9DrcfKY3mIYXB_aX5jcddqPybXunUddj86Hz8mNs9vF9d_ff9rgBu-GrdW1j6FrDX5MV06PaJLl9OU7xr7zbgrpXbvmyaWz1j2-iIXhB3oMx-Rto23Ak12ek4fzr_ery_RqffFttbxKNYAcUy6hEooVNTe0UJADLYzQBa2aRucNL1BKQ3nO0CiRN4pDLAKYOs-gYlljYE4Wr7rR7s8Jw1h2bajRWt1jtFcyKhgTTBZ5RN_v0Knq0JSDb-MJtuW_U0Xgww7Qoda28bqv27DnciioVGrP6TqUGzf5Pm4YJ5XPryr_vwqeAFsZhH8</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Chen, Zhe</creator><creator>Cui, Zhi-Min</creator><creator>Cao, Chang-Yan</creator><creator>He, Wei-Dong</creator><creator>Jiang, Lei</creator><creator>Song, Wei-Guo</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120918</creationdate><title>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</title><author>Chen, Zhe ; Cui, Zhi-Min ; Cao, Chang-Yan ; He, Wei-Dong ; Jiang, Lei ; Song, Wei-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-273b4918c2d08936308d4a80bffa6f28e77d0261ed946f9236f233dc653b15fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acrylamides - chemistry</topic><topic>Acrylic Resins</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Molecular</topic><topic>Nanospheres - chemistry</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Cui, Zhi-Min</creatorcontrib><creatorcontrib>Cao, Chang-Yan</creatorcontrib><creatorcontrib>He, Wei-Dong</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Song, Wei-Guo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhe</au><au>Cui, Zhi-Min</au><au>Cao, Chang-Yan</au><au>He, Wei-Dong</au><au>Jiang, Lei</au><au>Song, Wei-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>28</volume><issue>37</issue><spage>13452</spage><epage>13458</epage><pages>13452-13458</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>A nanoreactor with temperature-responsive poly(N-isopopylacrylamide) (PNIPAM) coated on the external pore mouth of mesoporous silica hollow spheres and Au nanoparticles at the internal pore mouth were fabricated. Such spatial separation allows both Au nanoparticles and PNIPAM to function without interfering with each other. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and temperature-dependent optical transmittance curves demonstrate successful grafting of PNIPAM. This nanoreactor shows repeated on/off catalytic activity switched by temperature control. It shows excellent catalytic activity toward 4-nitrophenol (4-NP) reduction at 30 °C [below lower critical solution temperature (LCST) of PNIPAM] with a turnover frequency (TOF) of 14.8 h–1. However, when the temperature was 50 °C (above LCST), the TOF dropped to 2.4 h–1. Kinetic studies indicated that diffusion into the mesopores of the catalyst was the key factor, and the temperature-responsive behavior of PNIPAM was able to control this diffusion.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22909224</pmid><doi>10.1021/la3022535</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-09, Vol.28 (37), p.13452-13458
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1041141786
source MEDLINE; ACS Publications
subjects Acrylamides - chemistry
Acrylic Resins
Catalysis
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Gold - chemistry
Metal Nanoparticles - chemistry
Models, Molecular
Nanospheres - chemistry
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Polymers - chemistry
Porosity
Porous materials
Silicon Dioxide - chemistry
Surface Properties
Temperature
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Temperature-Responsive Smart Nanoreactors: Poly(N‑isopropylacrylamide)-Coated Au@Mesoporous-SiO2 Hollow Nanospheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Responsive%20Smart%20Nanoreactors:%20Poly(N%E2%80%91isopropylacrylamide)-Coated%20Au@Mesoporous-SiO2%20Hollow%20Nanospheres&rft.jtitle=Langmuir&rft.au=Chen,%20Zhe&rft.date=2012-09-18&rft.volume=28&rft.issue=37&rft.spage=13452&rft.epage=13458&rft.pages=13452-13458&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la3022535&rft_dat=%3Cproquest_pubme%3E1041141786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041141786&rft_id=info:pmid/22909224&rfr_iscdi=true