Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?

This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2012-09, Vol.51 (2), p.239-248
1. Verfasser: Eling, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 2
container_start_page 239
container_title Insurance, mathematics & economics
container_volume 51
creator Eling, Martin
description This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration. ► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.
doi_str_mv 10.1016/j.insmatheco.2012.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038901541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668712000492</els_id><sourcerecordid>2741594561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWKvvEHDjZsakyfy5kVqsCgU3ug6Z5E5NnUlqklF8e1MrCG7c5BJy7pePgxCmJKeElpeb3NgwyPgCyuUzQmc54Tkh9ABNaF2xrGiK5hBNElplZVlXx-gkhA1JRFNWE6SWJkZj1ziljF5aBVj10gwBR4fDK3yAxtqE6E07RuNsuMJzDzh99_2aWecH2WNp9f4e4qjBRrx2TuPBaejD9Sk66mQf4OxnTtHz8vZpcZ-tHu8eFvNVpjhnMQOuO1oXdVVJBkS2lFLCVMM4oV0D7UymzqzVLe_aWkPV1EBBQzqVLgspJZuii33u1ru3EUIUgwkK-l5acGMQKa5uCC04Tej5H3TjRm9Tux3Fi6IkjCWq3lPKuxA8dGLrzSD9Z4LEzr7YiF_7YmdfEC52PafoZr-aBMC7AS-CMpD0auNBRaGd-T_kC5mUlGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034556033</pqid></control><display><type>article</type><title>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</title><source>Access via ScienceDirect (Elsevier)</source><creator>Eling, Martin</creator><creatorcontrib>Eling, Martin</creatorcontrib><description>This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration. ► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2012.04.001</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actuarial science ; Economic models ; Financial risks ; Financing methods ; Goodness of fit ; Insurance ; Insurance claims ; Liability ; Liability insurance ; Mathematical economics ; Mathematical models ; Property liability insurance ; Risk assessment ; Risk measurement ; Skew-normal ; Skew-student ; Studies</subject><ispartof>Insurance, mathematics &amp; economics, 2012-09, Vol.51 (2), p.239-248</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</citedby><cites>FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2012.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Eling, Martin</creatorcontrib><title>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</title><title>Insurance, mathematics &amp; economics</title><description>This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration. ► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.</description><subject>Actuarial science</subject><subject>Economic models</subject><subject>Financial risks</subject><subject>Financing methods</subject><subject>Goodness of fit</subject><subject>Insurance</subject><subject>Insurance claims</subject><subject>Liability</subject><subject>Liability insurance</subject><subject>Mathematical economics</subject><subject>Mathematical models</subject><subject>Property liability insurance</subject><subject>Risk assessment</subject><subject>Risk measurement</subject><subject>Skew-normal</subject><subject>Skew-student</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWKvvEHDjZsakyfy5kVqsCgU3ug6Z5E5NnUlqklF8e1MrCG7c5BJy7pePgxCmJKeElpeb3NgwyPgCyuUzQmc54Tkh9ABNaF2xrGiK5hBNElplZVlXx-gkhA1JRFNWE6SWJkZj1ziljF5aBVj10gwBR4fDK3yAxtqE6E07RuNsuMJzDzh99_2aWecH2WNp9f4e4qjBRrx2TuPBaejD9Sk66mQf4OxnTtHz8vZpcZ-tHu8eFvNVpjhnMQOuO1oXdVVJBkS2lFLCVMM4oV0D7UymzqzVLe_aWkPV1EBBQzqVLgspJZuii33u1ru3EUIUgwkK-l5acGMQKa5uCC04Tej5H3TjRm9Tux3Fi6IkjCWq3lPKuxA8dGLrzSD9Z4LEzr7YiF_7YmdfEC52PafoZr-aBMC7AS-CMpD0auNBRaGd-T_kC5mUlGk</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Eling, Martin</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20120901</creationdate><title>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</title><author>Eling, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actuarial science</topic><topic>Economic models</topic><topic>Financial risks</topic><topic>Financing methods</topic><topic>Goodness of fit</topic><topic>Insurance</topic><topic>Insurance claims</topic><topic>Liability</topic><topic>Liability insurance</topic><topic>Mathematical economics</topic><topic>Mathematical models</topic><topic>Property liability insurance</topic><topic>Risk assessment</topic><topic>Risk measurement</topic><topic>Skew-normal</topic><topic>Skew-student</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eling, Martin</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eling, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>51</volume><issue>2</issue><spage>239</spage><epage>248</epage><pages>239-248</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration. ► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2012.04.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2012-09, Vol.51 (2), p.239-248
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_1038901541
source Access via ScienceDirect (Elsevier)
subjects Actuarial science
Economic models
Financial risks
Financing methods
Goodness of fit
Insurance
Insurance claims
Liability
Liability insurance
Mathematical economics
Mathematical models
Property liability insurance
Risk assessment
Risk measurement
Skew-normal
Skew-student
Studies
title Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20insurance%20claims%20to%20skewed%20distributions:%20Are%20the%20skew-normal%20and%20skew-student%20good%20models?&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Eling,%20Martin&rft.date=2012-09-01&rft.volume=51&rft.issue=2&rft.spage=239&rft.epage=248&rft.pages=239-248&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2012.04.001&rft_dat=%3Cproquest_cross%3E2741594561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034556033&rft_id=info:pmid/&rft_els_id=S0167668712000492&rfr_iscdi=true