Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?
This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2012-09, Vol.51 (2), p.239-248 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Insurance, mathematics & economics |
container_volume | 51 |
creator | Eling, Martin |
description | This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration.
► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature. |
doi_str_mv | 10.1016/j.insmatheco.2012.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038901541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668712000492</els_id><sourcerecordid>2741594561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWKvvEHDjZsakyfy5kVqsCgU3ug6Z5E5NnUlqklF8e1MrCG7c5BJy7pePgxCmJKeElpeb3NgwyPgCyuUzQmc54Tkh9ABNaF2xrGiK5hBNElplZVlXx-gkhA1JRFNWE6SWJkZj1ziljF5aBVj10gwBR4fDK3yAxtqE6E07RuNsuMJzDzh99_2aWecH2WNp9f4e4qjBRrx2TuPBaejD9Sk66mQf4OxnTtHz8vZpcZ-tHu8eFvNVpjhnMQOuO1oXdVVJBkS2lFLCVMM4oV0D7UymzqzVLe_aWkPV1EBBQzqVLgspJZuii33u1ru3EUIUgwkK-l5acGMQKa5uCC04Tej5H3TjRm9Tux3Fi6IkjCWq3lPKuxA8dGLrzSD9Z4LEzr7YiF_7YmdfEC52PafoZr-aBMC7AS-CMpD0auNBRaGd-T_kC5mUlGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034556033</pqid></control><display><type>article</type><title>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</title><source>Access via ScienceDirect (Elsevier)</source><creator>Eling, Martin</creator><creatorcontrib>Eling, Martin</creatorcontrib><description>This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration.
► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2012.04.001</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actuarial science ; Economic models ; Financial risks ; Financing methods ; Goodness of fit ; Insurance ; Insurance claims ; Liability ; Liability insurance ; Mathematical economics ; Mathematical models ; Property liability insurance ; Risk assessment ; Risk measurement ; Skew-normal ; Skew-student ; Studies</subject><ispartof>Insurance, mathematics & economics, 2012-09, Vol.51 (2), p.239-248</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</citedby><cites>FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2012.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Eling, Martin</creatorcontrib><title>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</title><title>Insurance, mathematics & economics</title><description>This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration.
► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.</description><subject>Actuarial science</subject><subject>Economic models</subject><subject>Financial risks</subject><subject>Financing methods</subject><subject>Goodness of fit</subject><subject>Insurance</subject><subject>Insurance claims</subject><subject>Liability</subject><subject>Liability insurance</subject><subject>Mathematical economics</subject><subject>Mathematical models</subject><subject>Property liability insurance</subject><subject>Risk assessment</subject><subject>Risk measurement</subject><subject>Skew-normal</subject><subject>Skew-student</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWKvvEHDjZsakyfy5kVqsCgU3ug6Z5E5NnUlqklF8e1MrCG7c5BJy7pePgxCmJKeElpeb3NgwyPgCyuUzQmc54Tkh9ABNaF2xrGiK5hBNElplZVlXx-gkhA1JRFNWE6SWJkZj1ziljF5aBVj10gwBR4fDK3yAxtqE6E07RuNsuMJzDzh99_2aWecH2WNp9f4e4qjBRrx2TuPBaejD9Sk66mQf4OxnTtHz8vZpcZ-tHu8eFvNVpjhnMQOuO1oXdVVJBkS2lFLCVMM4oV0D7UymzqzVLe_aWkPV1EBBQzqVLgspJZuii33u1ru3EUIUgwkK-l5acGMQKa5uCC04Tej5H3TjRm9Tux3Fi6IkjCWq3lPKuxA8dGLrzSD9Z4LEzr7YiF_7YmdfEC52PafoZr-aBMC7AS-CMpD0auNBRaGd-T_kC5mUlGk</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Eling, Martin</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20120901</creationdate><title>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</title><author>Eling, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e4df185877a3e0ab11103c93401f9eb2a0013bdb4fb8de798e1ede8e1cd65aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actuarial science</topic><topic>Economic models</topic><topic>Financial risks</topic><topic>Financing methods</topic><topic>Goodness of fit</topic><topic>Insurance</topic><topic>Insurance claims</topic><topic>Liability</topic><topic>Liability insurance</topic><topic>Mathematical economics</topic><topic>Mathematical models</topic><topic>Property liability insurance</topic><topic>Risk assessment</topic><topic>Risk measurement</topic><topic>Skew-normal</topic><topic>Skew-student</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eling, Martin</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eling, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>51</volume><issue>2</issue><spage>239</spage><epage>248</epage><pages>239-248</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration.
► The skew-normal and skew-student distributions are recently discussed in finance literature. ► Are these reasonable models for describing claims in property-liability insurance? ► We empirically apply these two distributions to two well known datasets. ► We consider various goodness of fit tests and estimate tail risk measures. ► Result: the two models are reasonably good compared to other models used in literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2012.04.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2012-09, Vol.51 (2), p.239-248 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038901541 |
source | Access via ScienceDirect (Elsevier) |
subjects | Actuarial science Economic models Financial risks Financing methods Goodness of fit Insurance Insurance claims Liability Liability insurance Mathematical economics Mathematical models Property liability insurance Risk assessment Risk measurement Skew-normal Skew-student Studies |
title | Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20insurance%20claims%20to%20skewed%20distributions:%20Are%20the%20skew-normal%20and%20skew-student%20good%20models?&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Eling,%20Martin&rft.date=2012-09-01&rft.volume=51&rft.issue=2&rft.spage=239&rft.epage=248&rft.pages=239-248&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2012.04.001&rft_dat=%3Cproquest_cross%3E2741594561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034556033&rft_id=info:pmid/&rft_els_id=S0167668712000492&rfr_iscdi=true |