Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters
[Display omitted] ► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and re...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2012-07, Vol.115, p.141-146 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | |
container_start_page | 141 |
container_title | Bioresource technology |
container_volume | 115 |
creator | Zheng, Ming-Ming Lu, Yong Dong, Ling Guo, Ping-Mei Deng, Qian-Chun Li, Wen-Lin Feng, Yu-Qi Huang, Feng-Hong |
description | [Display omitted]
► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor.
In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles. |
doi_str_mv | 10.1016/j.biortech.2011.11.128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038617603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411017391</els_id><sourcerecordid>1017762784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EopfCKxQv2eTWdn6c7EBX_FSqxAK6thx7fOOrJA6eBDU8Ck-L09uyBWmkkezvnDP2EHLF2Z4zXl2f9q0PcQbT7QXjfL-VqJ-RHa9lnolGVs_JjjUVy-pSFBfkFeKJMZZzKV6SCyEEa4pC7Mjvm2EIre_9Lz37MNLg6EGP1ltN43IMqGnvJ41A01232himLuHmGucYxiM1D6oM7k2nxyNQt4xmO9E9xWRqNJ10nL3pAakLkaahk0T3azqjuI5zB-hxS526dQ44Qww9ha3ja_LC6R7hzWO_JHefPn4_fMluv36-OXy4zUzR8DnLnbVl0wqtXSm5EwYaDlA0VgrD20pIzuuS61xwKwsma1aXqbdcl4aBq8r8krw7-04x_FhStho8Guh7PUJYUHGW1xWXFcv_A-VSpsi6SGh1Rk0MiBGcmqIfdFwTtHGVOqmnFapthWorUSfh1WPG0g5g_8qedpaAt2fA6aD0MXpUd9-SQ8GSa1E-vOj9mYD0bT89RIXGw2jA-ghmVjb4f03xBxNmvZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017762784</pqid></control><display><type>article</type><title>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zheng, Ming-Ming ; Lu, Yong ; Dong, Ling ; Guo, Ping-Mei ; Deng, Qian-Chun ; Li, Wen-Lin ; Feng, Yu-Qi ; Huang, Feng-Hong</creator><creatorcontrib>Zheng, Ming-Ming ; Lu, Yong ; Dong, Ling ; Guo, Ping-Mei ; Deng, Qian-Chun ; Li, Wen-Lin ; Feng, Yu-Qi ; Huang, Feng-Hong</creatorcontrib><description>[Display omitted]
► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor.
In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.11.128</identifier><identifier>PMID: 22209442</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>absorption ; alpha-Linolenic Acid - metabolism ; Biocatalysis ; Biotechnology - methods ; Candida - enzymology ; Candida rugosa ; cation exchange ; Cation Exchange Resins - chemistry ; Enzyme Stability ; Enzymes, Immobilized - metabolism ; Esterification ; Esters - metabolism ; fatty acid esters ; free fatty acids ; hydrogen peroxide ; Hydrophobic and Hydrophilic Interactions ; Hydrophobic interaction/cation-exchange ; hydrophobicity ; Immobilized lipase ; Lipase - metabolism ; Microspheres ; Mixed-mode silica particles ; phytosterols ; Phytosterols - metabolism ; Recycling ; silica ; Silicon Dioxide - chemistry ; Substrate Specificity ; Sulfonic Acids - chemistry ; Temperature ; Time Factors ; transesterification ; triacylglycerol lipase</subject><ispartof>Bioresource technology, 2012-07, Vol.115, p.141-146</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</citedby><cites>FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.11.128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22209442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Ming-Ming</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Guo, Ping-Mei</creatorcontrib><creatorcontrib>Deng, Qian-Chun</creatorcontrib><creatorcontrib>Li, Wen-Lin</creatorcontrib><creatorcontrib>Feng, Yu-Qi</creatorcontrib><creatorcontrib>Huang, Feng-Hong</creatorcontrib><title>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor.
In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.</description><subject>absorption</subject><subject>alpha-Linolenic Acid - metabolism</subject><subject>Biocatalysis</subject><subject>Biotechnology - methods</subject><subject>Candida - enzymology</subject><subject>Candida rugosa</subject><subject>cation exchange</subject><subject>Cation Exchange Resins - chemistry</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Esterification</subject><subject>Esters - metabolism</subject><subject>fatty acid esters</subject><subject>free fatty acids</subject><subject>hydrogen peroxide</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobic interaction/cation-exchange</subject><subject>hydrophobicity</subject><subject>Immobilized lipase</subject><subject>Lipase - metabolism</subject><subject>Microspheres</subject><subject>Mixed-mode silica particles</subject><subject>phytosterols</subject><subject>Phytosterols - metabolism</subject><subject>Recycling</subject><subject>silica</subject><subject>Silicon Dioxide - chemistry</subject><subject>Substrate Specificity</subject><subject>Sulfonic Acids - chemistry</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>transesterification</subject><subject>triacylglycerol lipase</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0EopfCKxQv2eTWdn6c7EBX_FSqxAK6thx7fOOrJA6eBDU8Ck-L09uyBWmkkezvnDP2EHLF2Z4zXl2f9q0PcQbT7QXjfL-VqJ-RHa9lnolGVs_JjjUVy-pSFBfkFeKJMZZzKV6SCyEEa4pC7Mjvm2EIre_9Lz37MNLg6EGP1ltN43IMqGnvJ41A01232himLuHmGucYxiM1D6oM7k2nxyNQt4xmO9E9xWRqNJ10nL3pAakLkaahk0T3azqjuI5zB-hxS526dQ44Qww9ha3ja_LC6R7hzWO_JHefPn4_fMluv36-OXy4zUzR8DnLnbVl0wqtXSm5EwYaDlA0VgrD20pIzuuS61xwKwsma1aXqbdcl4aBq8r8krw7-04x_FhStho8Guh7PUJYUHGW1xWXFcv_A-VSpsi6SGh1Rk0MiBGcmqIfdFwTtHGVOqmnFapthWorUSfh1WPG0g5g_8qedpaAt2fA6aD0MXpUd9-SQ8GSa1E-vOj9mYD0bT89RIXGw2jA-ghmVjb4f03xBxNmvZA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Zheng, Ming-Ming</creator><creator>Lu, Yong</creator><creator>Dong, Ling</creator><creator>Guo, Ping-Mei</creator><creator>Deng, Qian-Chun</creator><creator>Li, Wen-Lin</creator><creator>Feng, Yu-Qi</creator><creator>Huang, Feng-Hong</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20120701</creationdate><title>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</title><author>Zheng, Ming-Ming ; Lu, Yong ; Dong, Ling ; Guo, Ping-Mei ; Deng, Qian-Chun ; Li, Wen-Lin ; Feng, Yu-Qi ; Huang, Feng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>absorption</topic><topic>alpha-Linolenic Acid - metabolism</topic><topic>Biocatalysis</topic><topic>Biotechnology - methods</topic><topic>Candida - enzymology</topic><topic>Candida rugosa</topic><topic>cation exchange</topic><topic>Cation Exchange Resins - chemistry</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Esterification</topic><topic>Esters - metabolism</topic><topic>fatty acid esters</topic><topic>free fatty acids</topic><topic>hydrogen peroxide</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobic interaction/cation-exchange</topic><topic>hydrophobicity</topic><topic>Immobilized lipase</topic><topic>Lipase - metabolism</topic><topic>Microspheres</topic><topic>Mixed-mode silica particles</topic><topic>phytosterols</topic><topic>Phytosterols - metabolism</topic><topic>Recycling</topic><topic>silica</topic><topic>Silicon Dioxide - chemistry</topic><topic>Substrate Specificity</topic><topic>Sulfonic Acids - chemistry</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>transesterification</topic><topic>triacylglycerol lipase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ming-Ming</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Guo, Ping-Mei</creatorcontrib><creatorcontrib>Deng, Qian-Chun</creatorcontrib><creatorcontrib>Li, Wen-Lin</creatorcontrib><creatorcontrib>Feng, Yu-Qi</creatorcontrib><creatorcontrib>Huang, Feng-Hong</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ming-Ming</au><au>Lu, Yong</au><au>Dong, Ling</au><au>Guo, Ping-Mei</au><au>Deng, Qian-Chun</au><au>Li, Wen-Lin</au><au>Feng, Yu-Qi</au><au>Huang, Feng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>115</volume><spage>141</spage><epage>146</epage><pages>141-146</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor.
In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22209442</pmid><doi>10.1016/j.biortech.2011.11.128</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2012-07, Vol.115, p.141-146 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038617603 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | absorption alpha-Linolenic Acid - metabolism Biocatalysis Biotechnology - methods Candida - enzymology Candida rugosa cation exchange Cation Exchange Resins - chemistry Enzyme Stability Enzymes, Immobilized - metabolism Esterification Esters - metabolism fatty acid esters free fatty acids hydrogen peroxide Hydrophobic and Hydrophilic Interactions Hydrophobic interaction/cation-exchange hydrophobicity Immobilized lipase Lipase - metabolism Microspheres Mixed-mode silica particles phytosterols Phytosterols - metabolism Recycling silica Silicon Dioxide - chemistry Substrate Specificity Sulfonic Acids - chemistry Temperature Time Factors transesterification triacylglycerol lipase |
title | Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Candida%20rugosa%20lipase%20on%20hydrophobic/strong%20cation-exchange%20functional%20silica%20particles%20for%20biocatalytic%20synthesis%20of%20phytosterol%20esters&rft.jtitle=Bioresource%20technology&rft.au=Zheng,%20Ming-Ming&rft.date=2012-07-01&rft.volume=115&rft.spage=141&rft.epage=146&rft.pages=141-146&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.11.128&rft_dat=%3Cproquest_cross%3E1017762784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017762784&rft_id=info:pmid/22209442&rft_els_id=S0960852411017391&rfr_iscdi=true |