Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters

[Display omitted] ► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2012-07, Vol.115, p.141-146
Hauptverfasser: Zheng, Ming-Ming, Lu, Yong, Dong, Ling, Guo, Ping-Mei, Deng, Qian-Chun, Li, Wen-Lin, Feng, Yu-Qi, Huang, Feng-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue
container_start_page 141
container_title Bioresource technology
container_volume 115
creator Zheng, Ming-Ming
Lu, Yong
Dong, Ling
Guo, Ping-Mei
Deng, Qian-Chun
Li, Wen-Lin
Feng, Yu-Qi
Huang, Feng-Hong
description [Display omitted] ► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor. In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.
doi_str_mv 10.1016/j.biortech.2011.11.128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038617603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411017391</els_id><sourcerecordid>1017762784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EopfCKxQv2eTWdn6c7EBX_FSqxAK6thx7fOOrJA6eBDU8Ck-L09uyBWmkkezvnDP2EHLF2Z4zXl2f9q0PcQbT7QXjfL-VqJ-RHa9lnolGVs_JjjUVy-pSFBfkFeKJMZZzKV6SCyEEa4pC7Mjvm2EIre_9Lz37MNLg6EGP1ltN43IMqGnvJ41A01232himLuHmGucYxiM1D6oM7k2nxyNQt4xmO9E9xWRqNJ10nL3pAakLkaahk0T3azqjuI5zB-hxS526dQ44Qww9ha3ja_LC6R7hzWO_JHefPn4_fMluv36-OXy4zUzR8DnLnbVl0wqtXSm5EwYaDlA0VgrD20pIzuuS61xwKwsma1aXqbdcl4aBq8r8krw7-04x_FhStho8Guh7PUJYUHGW1xWXFcv_A-VSpsi6SGh1Rk0MiBGcmqIfdFwTtHGVOqmnFapthWorUSfh1WPG0g5g_8qedpaAt2fA6aD0MXpUd9-SQ8GSa1E-vOj9mYD0bT89RIXGw2jA-ghmVjb4f03xBxNmvZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017762784</pqid></control><display><type>article</type><title>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zheng, Ming-Ming ; Lu, Yong ; Dong, Ling ; Guo, Ping-Mei ; Deng, Qian-Chun ; Li, Wen-Lin ; Feng, Yu-Qi ; Huang, Feng-Hong</creator><creatorcontrib>Zheng, Ming-Ming ; Lu, Yong ; Dong, Ling ; Guo, Ping-Mei ; Deng, Qian-Chun ; Li, Wen-Lin ; Feng, Yu-Qi ; Huang, Feng-Hong</creatorcontrib><description>[Display omitted] ► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor. In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.11.128</identifier><identifier>PMID: 22209442</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>absorption ; alpha-Linolenic Acid - metabolism ; Biocatalysis ; Biotechnology - methods ; Candida - enzymology ; Candida rugosa ; cation exchange ; Cation Exchange Resins - chemistry ; Enzyme Stability ; Enzymes, Immobilized - metabolism ; Esterification ; Esters - metabolism ; fatty acid esters ; free fatty acids ; hydrogen peroxide ; Hydrophobic and Hydrophilic Interactions ; Hydrophobic interaction/cation-exchange ; hydrophobicity ; Immobilized lipase ; Lipase - metabolism ; Microspheres ; Mixed-mode silica particles ; phytosterols ; Phytosterols - metabolism ; Recycling ; silica ; Silicon Dioxide - chemistry ; Substrate Specificity ; Sulfonic Acids - chemistry ; Temperature ; Time Factors ; transesterification ; triacylglycerol lipase</subject><ispartof>Bioresource technology, 2012-07, Vol.115, p.141-146</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</citedby><cites>FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.11.128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22209442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Ming-Ming</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Guo, Ping-Mei</creatorcontrib><creatorcontrib>Deng, Qian-Chun</creatorcontrib><creatorcontrib>Li, Wen-Lin</creatorcontrib><creatorcontrib>Feng, Yu-Qi</creatorcontrib><creatorcontrib>Huang, Feng-Hong</creatorcontrib><title>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] ► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor. In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.</description><subject>absorption</subject><subject>alpha-Linolenic Acid - metabolism</subject><subject>Biocatalysis</subject><subject>Biotechnology - methods</subject><subject>Candida - enzymology</subject><subject>Candida rugosa</subject><subject>cation exchange</subject><subject>Cation Exchange Resins - chemistry</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Esterification</subject><subject>Esters - metabolism</subject><subject>fatty acid esters</subject><subject>free fatty acids</subject><subject>hydrogen peroxide</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobic interaction/cation-exchange</subject><subject>hydrophobicity</subject><subject>Immobilized lipase</subject><subject>Lipase - metabolism</subject><subject>Microspheres</subject><subject>Mixed-mode silica particles</subject><subject>phytosterols</subject><subject>Phytosterols - metabolism</subject><subject>Recycling</subject><subject>silica</subject><subject>Silicon Dioxide - chemistry</subject><subject>Substrate Specificity</subject><subject>Sulfonic Acids - chemistry</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>transesterification</subject><subject>triacylglycerol lipase</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0EopfCKxQv2eTWdn6c7EBX_FSqxAK6thx7fOOrJA6eBDU8Ck-L09uyBWmkkezvnDP2EHLF2Z4zXl2f9q0PcQbT7QXjfL-VqJ-RHa9lnolGVs_JjjUVy-pSFBfkFeKJMZZzKV6SCyEEa4pC7Mjvm2EIre_9Lz37MNLg6EGP1ltN43IMqGnvJ41A01232himLuHmGucYxiM1D6oM7k2nxyNQt4xmO9E9xWRqNJ10nL3pAakLkaahk0T3azqjuI5zB-hxS526dQ44Qww9ha3ja_LC6R7hzWO_JHefPn4_fMluv36-OXy4zUzR8DnLnbVl0wqtXSm5EwYaDlA0VgrD20pIzuuS61xwKwsma1aXqbdcl4aBq8r8krw7-04x_FhStho8Guh7PUJYUHGW1xWXFcv_A-VSpsi6SGh1Rk0MiBGcmqIfdFwTtHGVOqmnFapthWorUSfh1WPG0g5g_8qedpaAt2fA6aD0MXpUd9-SQ8GSa1E-vOj9mYD0bT89RIXGw2jA-ghmVjb4f03xBxNmvZA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Zheng, Ming-Ming</creator><creator>Lu, Yong</creator><creator>Dong, Ling</creator><creator>Guo, Ping-Mei</creator><creator>Deng, Qian-Chun</creator><creator>Li, Wen-Lin</creator><creator>Feng, Yu-Qi</creator><creator>Huang, Feng-Hong</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20120701</creationdate><title>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</title><author>Zheng, Ming-Ming ; Lu, Yong ; Dong, Ling ; Guo, Ping-Mei ; Deng, Qian-Chun ; Li, Wen-Lin ; Feng, Yu-Qi ; Huang, Feng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-3fdd59b2aaf571f2ce91ee49d72c1b62711851a321d74078085740b1a5c0ef653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>absorption</topic><topic>alpha-Linolenic Acid - metabolism</topic><topic>Biocatalysis</topic><topic>Biotechnology - methods</topic><topic>Candida - enzymology</topic><topic>Candida rugosa</topic><topic>cation exchange</topic><topic>Cation Exchange Resins - chemistry</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Esterification</topic><topic>Esters - metabolism</topic><topic>fatty acid esters</topic><topic>free fatty acids</topic><topic>hydrogen peroxide</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobic interaction/cation-exchange</topic><topic>hydrophobicity</topic><topic>Immobilized lipase</topic><topic>Lipase - metabolism</topic><topic>Microspheres</topic><topic>Mixed-mode silica particles</topic><topic>phytosterols</topic><topic>Phytosterols - metabolism</topic><topic>Recycling</topic><topic>silica</topic><topic>Silicon Dioxide - chemistry</topic><topic>Substrate Specificity</topic><topic>Sulfonic Acids - chemistry</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>transesterification</topic><topic>triacylglycerol lipase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ming-Ming</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Guo, Ping-Mei</creatorcontrib><creatorcontrib>Deng, Qian-Chun</creatorcontrib><creatorcontrib>Li, Wen-Lin</creatorcontrib><creatorcontrib>Feng, Yu-Qi</creatorcontrib><creatorcontrib>Huang, Feng-Hong</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ming-Ming</au><au>Lu, Yong</au><au>Dong, Ling</au><au>Guo, Ping-Mei</au><au>Deng, Qian-Chun</au><au>Li, Wen-Lin</au><au>Feng, Yu-Qi</au><au>Huang, Feng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>115</volume><spage>141</spage><epage>146</epage><pages>141-146</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] ► Mixed-mode silica particles functionalized with octyl and sulfonic acid groups were prepared. ► Candida rugosa lipase was immobilized on the silica particles via hydrophobic and strong cation-exchange interaction. ► The immobilized lipase exhibited better thermal stability and reusability. ► Biocatalysis for esterification of phytosterols with different kinds of acyl donor. In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22209442</pmid><doi>10.1016/j.biortech.2011.11.128</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2012-07, Vol.115, p.141-146
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1038617603
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects absorption
alpha-Linolenic Acid - metabolism
Biocatalysis
Biotechnology - methods
Candida - enzymology
Candida rugosa
cation exchange
Cation Exchange Resins - chemistry
Enzyme Stability
Enzymes, Immobilized - metabolism
Esterification
Esters - metabolism
fatty acid esters
free fatty acids
hydrogen peroxide
Hydrophobic and Hydrophilic Interactions
Hydrophobic interaction/cation-exchange
hydrophobicity
Immobilized lipase
Lipase - metabolism
Microspheres
Mixed-mode silica particles
phytosterols
Phytosterols - metabolism
Recycling
silica
Silicon Dioxide - chemistry
Substrate Specificity
Sulfonic Acids - chemistry
Temperature
Time Factors
transesterification
triacylglycerol lipase
title Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Candida%20rugosa%20lipase%20on%20hydrophobic/strong%20cation-exchange%20functional%20silica%20particles%20for%20biocatalytic%20synthesis%20of%20phytosterol%20esters&rft.jtitle=Bioresource%20technology&rft.au=Zheng,%20Ming-Ming&rft.date=2012-07-01&rft.volume=115&rft.spage=141&rft.epage=146&rft.pages=141-146&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.11.128&rft_dat=%3Cproquest_cross%3E1017762784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017762784&rft_id=info:pmid/22209442&rft_els_id=S0960852411017391&rfr_iscdi=true