Modeling and analyzing higher-order correlations in non-Poissonian spike trains
► Generation of non-Poissonian spike trains with defined higher-order correlations. ► Non-Poissonian spiking can impair the estimation of higher-order correlations. ► Correlation measures can be calibrated by the use of this method. Measuring pairwise and higher-order spike correlations is crucial f...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2012-06, Vol.208 (1), p.18-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Generation of non-Poissonian spike trains with defined higher-order correlations. ► Non-Poissonian spiking can impair the estimation of higher-order correlations. ► Correlation measures can be calibrated by the use of this method.
Measuring pairwise and higher-order spike correlations is crucial for studying their potential impact on neuronal information processing. In order to avoid misinterpretation of results, the tools used for data analysis need to be carefully calibrated with respect to their sensitivity and robustness. This, in turn, requires surrogate data with statistical properties common to experimental spike trains. Here, we present a novel method to generate correlated non-Poissonian spike trains and study the impact of single-neuron spike statistics on the inference of higher-order correlations. Our method to mimic cooperative neuronal spike activity allows the realization of a large variety of renewal processes with controlled higher-order correlation structure. Based on surrogate data obtained by this procedure we investigate the robustness of the recently proposed method empirical de-Poissonization (Ehm et al., 2007). It assumes Poissonian spiking, which is common also for many other estimation techniques. We observe that some degree of deviation from this assumption can generally be tolerated, that the results are more reliable for small analysis bins, and that the degree of misestimation depends on the detailed spike statistics. As a consequence of these findings we finally propose a strategy to assess the reliability of results for experimental data. |
---|---|
ISSN: | 0165-0270 1872-678X |
DOI: | 10.1016/j.jneumeth.2012.04.015 |