Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation
Summary Glutamate, the major amino group donor in anabolism, is synthesized by the combined action of the glutamine synthetase (GS) and the glutamate synthase (GOGAT) in Bacillus subtilis. The glutamate dehydrogenase (GDH) exclusively degrades glutamate. GS and GDH are both trigger enzymes, active i...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2012-07, Vol.85 (2), p.213-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 2 |
container_start_page | 213 |
container_title | Molecular microbiology |
container_volume | 85 |
creator | Gunka, Katrin Commichau, Fabian M. |
description | Summary
Glutamate, the major amino group donor in anabolism, is synthesized by the combined action of the glutamine synthetase (GS) and the glutamate synthase (GOGAT) in Bacillus subtilis. The glutamate dehydrogenase (GDH) exclusively degrades glutamate. GS and GDH are both trigger enzymes, active in nitrogen metabolism and in controlling gene expression. Feedback‐inhibited GS (FBI‐GS) controls DNA‐binding activities of two transcription factors, the repressor GlnR and TnrA, the global regulator of nitrogen metabolism. FBI‐GS binds to and activates GlnR. This protein complex inhibits GS formation and thus glutamine synthesis. Moreover, FBI‐GS inhibits DNA‐binding activity of TnrA. Glutamate biosynthesis, the reaction linking carbon with nitrogen metabolism, is controlled by GDH. Together with glutamate GDH inhibits GltC, the transcription factor that activates expression of the GOGAT genes. Thus, GS and GDH control glutamine and glutamate synthesis, respectively, depending on the nitrogen status of the cell. B. subtilis lacking a functional GDH show a severe growth defect. Interestingly, the growth defect is suppressed by the rapid activation of an inactive GDH. Thus, maintenance of glutamate homeostasis is crucial for cellular vitality. This review covers the recent work on the complex control of glutamine and glutamate metabolism in the Gram‐positive model organism B. subtilis. |
doi_str_mv | 10.1111/j.1365-2958.2012.08105.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038615918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709516071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6145-927be45455dfa30b4edcdf115939fd9799643dd9e6e9b8bcd814c559fe090f9f3</originalsourceid><addsrcrecordid>eNqNkdFu0zAUhiMEYt3gFZAlhMQFCXYcJzHSLlg1xqQOJDTExI3lxCebixMX29Hat-CRcdpSEFfzjS2d7_9t60sSRHBG4nq7zAgtWZpzVmc5JnmGa4JZtn6UzA6Dx8kMc4ZTWuc3R8mx90uMCcUlfZoc5XmZM1KxWfJrbofgrEG2Q7dmDLKXAdCd7cH6IL32SA_oTLbamNEjPzZBG-3fIYla268MrOM8gFsZuUENhHuAAcm-t4MeeyS91702Mmg7vPmnvtHWb4ZwB1O_HBRScOuk2nLPkiedNB6e7_eT5OuH8-v5x3Tx-eJy_n6RtiUpWMrzqoGCFYypTlLcFKBa1RHCOOWd4hXnZUGV4lACb-qmVTUpWsZ4B5jjjnf0JHm96105-3MEH0SvfQvGyAHs6AXBtC5jHakfgOYF5lVdTejL_9ClHd0QP7KlKswiGKl6R7XOeu-gEyune-k2ERKTYLEUk0cxeRSTYLEVLNYx-mJ_wdj0oA7BP0Yj8GoPSN9K0zk5tNr_5cr4MVrlkTvdcffawObBDxBXV5fTKebTXV77AOtDXrofoqxoxcS3Txfi7Dv9smA3pbimvwFk-NMH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024705097</pqid></control><display><type>article</type><title>Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gunka, Katrin ; Commichau, Fabian M.</creator><creatorcontrib>Gunka, Katrin ; Commichau, Fabian M.</creatorcontrib><description>Summary
Glutamate, the major amino group donor in anabolism, is synthesized by the combined action of the glutamine synthetase (GS) and the glutamate synthase (GOGAT) in Bacillus subtilis. The glutamate dehydrogenase (GDH) exclusively degrades glutamate. GS and GDH are both trigger enzymes, active in nitrogen metabolism and in controlling gene expression. Feedback‐inhibited GS (FBI‐GS) controls DNA‐binding activities of two transcription factors, the repressor GlnR and TnrA, the global regulator of nitrogen metabolism. FBI‐GS binds to and activates GlnR. This protein complex inhibits GS formation and thus glutamine synthesis. Moreover, FBI‐GS inhibits DNA‐binding activity of TnrA. Glutamate biosynthesis, the reaction linking carbon with nitrogen metabolism, is controlled by GDH. Together with glutamate GDH inhibits GltC, the transcription factor that activates expression of the GOGAT genes. Thus, GS and GDH control glutamine and glutamate synthesis, respectively, depending on the nitrogen status of the cell. B. subtilis lacking a functional GDH show a severe growth defect. Interestingly, the growth defect is suppressed by the rapid activation of an inactive GDH. Thus, maintenance of glutamate homeostasis is crucial for cellular vitality. This review covers the recent work on the complex control of glutamine and glutamate metabolism in the Gram‐positive model organism B. subtilis.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2012.08105.x</identifier><identifier>PMID: 22625175</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Bacillus subtilis ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacteriology ; Biological and medical sciences ; Biosynthesis ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; Glutamic Acid - metabolism ; Gram-positive bacteria ; Homeostasis ; Metabolic Networks and Pathways - genetics ; Metabolism ; Microbiology ; Miscellaneous ; Models, Biological ; Quaternary Ammonium Compounds - metabolism</subject><ispartof>Molecular microbiology, 2012-07, Vol.85 (2), p.213-224</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6145-927be45455dfa30b4edcdf115939fd9799643dd9e6e9b8bcd814c559fe090f9f3</citedby><cites>FETCH-LOGICAL-c6145-927be45455dfa30b4edcdf115939fd9799643dd9e6e9b8bcd814c559fe090f9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2012.08105.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2012.08105.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26103372$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22625175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunka, Katrin</creatorcontrib><creatorcontrib>Commichau, Fabian M.</creatorcontrib><title>Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Glutamate, the major amino group donor in anabolism, is synthesized by the combined action of the glutamine synthetase (GS) and the glutamate synthase (GOGAT) in Bacillus subtilis. The glutamate dehydrogenase (GDH) exclusively degrades glutamate. GS and GDH are both trigger enzymes, active in nitrogen metabolism and in controlling gene expression. Feedback‐inhibited GS (FBI‐GS) controls DNA‐binding activities of two transcription factors, the repressor GlnR and TnrA, the global regulator of nitrogen metabolism. FBI‐GS binds to and activates GlnR. This protein complex inhibits GS formation and thus glutamine synthesis. Moreover, FBI‐GS inhibits DNA‐binding activity of TnrA. Glutamate biosynthesis, the reaction linking carbon with nitrogen metabolism, is controlled by GDH. Together with glutamate GDH inhibits GltC, the transcription factor that activates expression of the GOGAT genes. Thus, GS and GDH control glutamine and glutamate synthesis, respectively, depending on the nitrogen status of the cell. B. subtilis lacking a functional GDH show a severe growth defect. Interestingly, the growth defect is suppressed by the rapid activation of an inactive GDH. Thus, maintenance of glutamate homeostasis is crucial for cellular vitality. This review covers the recent work on the complex control of glutamine and glutamate metabolism in the Gram‐positive model organism B. subtilis.</description><subject>Amino acids</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Glutamic Acid - metabolism</subject><subject>Gram-positive bacteria</subject><subject>Homeostasis</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFu0zAUhiMEYt3gFZAlhMQFCXYcJzHSLlg1xqQOJDTExI3lxCebixMX29Hat-CRcdpSEFfzjS2d7_9t60sSRHBG4nq7zAgtWZpzVmc5JnmGa4JZtn6UzA6Dx8kMc4ZTWuc3R8mx90uMCcUlfZoc5XmZM1KxWfJrbofgrEG2Q7dmDLKXAdCd7cH6IL32SA_oTLbamNEjPzZBG-3fIYla268MrOM8gFsZuUENhHuAAcm-t4MeeyS91702Mmg7vPmnvtHWb4ZwB1O_HBRScOuk2nLPkiedNB6e7_eT5OuH8-v5x3Tx-eJy_n6RtiUpWMrzqoGCFYypTlLcFKBa1RHCOOWd4hXnZUGV4lACb-qmVTUpWsZ4B5jjjnf0JHm96105-3MEH0SvfQvGyAHs6AXBtC5jHakfgOYF5lVdTejL_9ClHd0QP7KlKswiGKl6R7XOeu-gEyune-k2ERKTYLEUk0cxeRSTYLEVLNYx-mJ_wdj0oA7BP0Yj8GoPSN9K0zk5tNr_5cr4MVrlkTvdcffawObBDxBXV5fTKebTXV77AOtDXrofoqxoxcS3Txfi7Dv9smA3pbimvwFk-NMH</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Gunka, Katrin</creator><creator>Commichau, Fabian M.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201207</creationdate><title>Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation</title><author>Gunka, Katrin ; Commichau, Fabian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6145-927be45455dfa30b4edcdf115939fd9799643dd9e6e9b8bcd814c559fe090f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino acids</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Glutamic Acid - metabolism</topic><topic>Gram-positive bacteria</topic><topic>Homeostasis</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunka, Katrin</creatorcontrib><creatorcontrib>Commichau, Fabian M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunka, Katrin</au><au>Commichau, Fabian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2012-07</date><risdate>2012</risdate><volume>85</volume><issue>2</issue><spage>213</spage><epage>224</epage><pages>213-224</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Glutamate, the major amino group donor in anabolism, is synthesized by the combined action of the glutamine synthetase (GS) and the glutamate synthase (GOGAT) in Bacillus subtilis. The glutamate dehydrogenase (GDH) exclusively degrades glutamate. GS and GDH are both trigger enzymes, active in nitrogen metabolism and in controlling gene expression. Feedback‐inhibited GS (FBI‐GS) controls DNA‐binding activities of two transcription factors, the repressor GlnR and TnrA, the global regulator of nitrogen metabolism. FBI‐GS binds to and activates GlnR. This protein complex inhibits GS formation and thus glutamine synthesis. Moreover, FBI‐GS inhibits DNA‐binding activity of TnrA. Glutamate biosynthesis, the reaction linking carbon with nitrogen metabolism, is controlled by GDH. Together with glutamate GDH inhibits GltC, the transcription factor that activates expression of the GOGAT genes. Thus, GS and GDH control glutamine and glutamate synthesis, respectively, depending on the nitrogen status of the cell. B. subtilis lacking a functional GDH show a severe growth defect. Interestingly, the growth defect is suppressed by the rapid activation of an inactive GDH. Thus, maintenance of glutamate homeostasis is crucial for cellular vitality. This review covers the recent work on the complex control of glutamine and glutamate metabolism in the Gram‐positive model organism B. subtilis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22625175</pmid><doi>10.1111/j.1365-2958.2012.08105.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2012-07, Vol.85 (2), p.213-224 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038615918 |
source | MEDLINE; Wiley Journals; Wiley Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Amino acids Bacillus subtilis Bacillus subtilis - enzymology Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacteriology Biological and medical sciences Biosynthesis Enzymes Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Bacterial Gene Expression Regulation, Enzymologic Glutamic Acid - metabolism Gram-positive bacteria Homeostasis Metabolic Networks and Pathways - genetics Metabolism Microbiology Miscellaneous Models, Biological Quaternary Ammonium Compounds - metabolism |
title | Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20glutamate%20homeostasis%20in%20Bacillus%20subtilis:%20a%20complex%20interplay%20between%20ammonium%20assimilation,%20glutamate%20biosynthesis%20and%20degradation&rft.jtitle=Molecular%20microbiology&rft.au=Gunka,%20Katrin&rft.date=2012-07&rft.volume=85&rft.issue=2&rft.spage=213&rft.epage=224&rft.pages=213-224&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2012.08105.x&rft_dat=%3Cproquest_cross%3E2709516071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024705097&rft_id=info:pmid/22625175&rfr_iscdi=true |