Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production
Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2012-09, Vol.14 (5), p.528-532 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 5 |
container_start_page | 528 |
container_title | Metabolic engineering |
container_volume | 14 |
creator | Joe Shaw, A. Covalla, Sean F. Miller, Bethany B. Firliet, Brian T. Hogsett, David A. Herring, Christopher D. |
description | Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable.
► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation. |
doi_str_mv | 10.1016/j.ymben.2012.06.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038614749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717612000699</els_id><sourcerecordid>1035530802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EoqXtJ0CCHLlsOnYcO3vggCr-SZV6oHu2JvZk41USL3ZS2G-Pl217RJxsa37vzYwfY285lBy4ut6Vh7GlqRTARQmqBJAv2DmHtVpp3siXz3etztiblHYAnNdr_pqdCaEbLhpxzsZNJExU0O99pJR8mAo_FVjc9xTHgBNSDC3amaJfxiKhtT3GMBxmb_Ob5h6nMIQtZc0whF-p6P22L2afBU_VYh-DW-ycvS_Zqw6HRFeP5wXbfPl8f_NtdXv39fvNp9uVlVzNK8obUe2kkFALkqqxSusGHQC2spVdZwlrEHatdVWj65quk1hzcE6jrISsLtiHk29u_XOhNJvRJ0vDgBOFJRkOVaO41HL9P2hdV9CAyGh1Qm0MKUXqzD76EeMhQ-YYidmZv5GYYyQGlMmRZNW7xwZLO5J71jxlkIH3J6DDYHAbfTKbH9lB5bx0nvJo8fFEUP6zB0_RJOtpsuR8JDsbF_w_R_gDcJCpSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035530802</pqid></control><display><type>article</type><title>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Joe Shaw, A. ; Covalla, Sean F. ; Miller, Bethany B. ; Firliet, Brian T. ; Hogsett, David A. ; Herring, Christopher D.</creator><creatorcontrib>Joe Shaw, A. ; Covalla, Sean F. ; Miller, Bethany B. ; Firliet, Brian T. ; Hogsett, David A. ; Herring, Christopher D.</creatorcontrib><description>Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable.
► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2012.06.004</identifier><identifier>PMID: 22781282</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Ammonium ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Biofuels ; Clostridium thermocellum - enzymology ; Clostridium thermocellum - genetics ; Enzymes ; Ethanol ; Ethanol - metabolism ; Fermentation ; Gene Expression ; Hydrogen-Ion Concentration ; metabolic engineering ; Osmotic Pressure ; pH effects ; Salts ; Stress ; Thermoanaerobacterium - enzymology ; Thermoanaerobacterium - genetics ; Thermoanaerobacterium - growth & development ; Thermophiles ; Urea ; Urea - metabolism ; Urease ; Urease - biosynthesis ; Urease - genetics</subject><ispartof>Metabolic engineering, 2012-09, Vol.14 (5), p.528-532</ispartof><rights>2012</rights><rights>Copyright © 2012. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</citedby><cites>FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2012.06.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22781282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joe Shaw, A.</creatorcontrib><creatorcontrib>Covalla, Sean F.</creatorcontrib><creatorcontrib>Miller, Bethany B.</creatorcontrib><creatorcontrib>Firliet, Brian T.</creatorcontrib><creatorcontrib>Hogsett, David A.</creatorcontrib><creatorcontrib>Herring, Christopher D.</creatorcontrib><title>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable.
► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.</description><subject>Ammonium</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofuels</subject><subject>Clostridium thermocellum - enzymology</subject><subject>Clostridium thermocellum - genetics</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Gene Expression</subject><subject>Hydrogen-Ion Concentration</subject><subject>metabolic engineering</subject><subject>Osmotic Pressure</subject><subject>pH effects</subject><subject>Salts</subject><subject>Stress</subject><subject>Thermoanaerobacterium - enzymology</subject><subject>Thermoanaerobacterium - genetics</subject><subject>Thermoanaerobacterium - growth & development</subject><subject>Thermophiles</subject><subject>Urea</subject><subject>Urea - metabolism</subject><subject>Urease</subject><subject>Urease - biosynthesis</subject><subject>Urease - genetics</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EoqXtJ0CCHLlsOnYcO3vggCr-SZV6oHu2JvZk41USL3ZS2G-Pl217RJxsa37vzYwfY285lBy4ut6Vh7GlqRTARQmqBJAv2DmHtVpp3siXz3etztiblHYAnNdr_pqdCaEbLhpxzsZNJExU0O99pJR8mAo_FVjc9xTHgBNSDC3amaJfxiKhtT3GMBxmb_Ob5h6nMIQtZc0whF-p6P22L2afBU_VYh-DW-ycvS_Zqw6HRFeP5wXbfPl8f_NtdXv39fvNp9uVlVzNK8obUe2kkFALkqqxSusGHQC2spVdZwlrEHatdVWj65quk1hzcE6jrISsLtiHk29u_XOhNJvRJ0vDgBOFJRkOVaO41HL9P2hdV9CAyGh1Qm0MKUXqzD76EeMhQ-YYidmZv5GYYyQGlMmRZNW7xwZLO5J71jxlkIH3J6DDYHAbfTKbH9lB5bx0nvJo8fFEUP6zB0_RJOtpsuR8JDsbF_w_R_gDcJCpSA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Joe Shaw, A.</creator><creator>Covalla, Sean F.</creator><creator>Miller, Bethany B.</creator><creator>Firliet, Brian T.</creator><creator>Hogsett, David A.</creator><creator>Herring, Christopher D.</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120901</creationdate><title>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</title><author>Joe Shaw, A. ; Covalla, Sean F. ; Miller, Bethany B. ; Firliet, Brian T. ; Hogsett, David A. ; Herring, Christopher D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonium</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofuels</topic><topic>Clostridium thermocellum - enzymology</topic><topic>Clostridium thermocellum - genetics</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Gene Expression</topic><topic>Hydrogen-Ion Concentration</topic><topic>metabolic engineering</topic><topic>Osmotic Pressure</topic><topic>pH effects</topic><topic>Salts</topic><topic>Stress</topic><topic>Thermoanaerobacterium - enzymology</topic><topic>Thermoanaerobacterium - genetics</topic><topic>Thermoanaerobacterium - growth & development</topic><topic>Thermophiles</topic><topic>Urea</topic><topic>Urea - metabolism</topic><topic>Urease</topic><topic>Urease - biosynthesis</topic><topic>Urease - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joe Shaw, A.</creatorcontrib><creatorcontrib>Covalla, Sean F.</creatorcontrib><creatorcontrib>Miller, Bethany B.</creatorcontrib><creatorcontrib>Firliet, Brian T.</creatorcontrib><creatorcontrib>Hogsett, David A.</creatorcontrib><creatorcontrib>Herring, Christopher D.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joe Shaw, A.</au><au>Covalla, Sean F.</au><au>Miller, Bethany B.</au><au>Firliet, Brian T.</au><au>Hogsett, David A.</au><au>Herring, Christopher D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>5</issue><spage>528</spage><epage>532</epage><pages>528-532</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable.
► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>22781282</pmid><doi>10.1016/j.ymben.2012.06.004</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2012-09, Vol.14 (5), p.528-532 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038614749 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Ammonium Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Biofuels Clostridium thermocellum - enzymology Clostridium thermocellum - genetics Enzymes Ethanol Ethanol - metabolism Fermentation Gene Expression Hydrogen-Ion Concentration metabolic engineering Osmotic Pressure pH effects Salts Stress Thermoanaerobacterium - enzymology Thermoanaerobacterium - genetics Thermoanaerobacterium - growth & development Thermophiles Urea Urea - metabolism Urease Urease - biosynthesis Urease - genetics |
title | Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urease%20expression%20in%20a%20Thermoanaerobacterium%20saccharolyticum%20ethanologen%20allows%20high%20titer%20ethanol%20production&rft.jtitle=Metabolic%20engineering&rft.au=Joe%20Shaw,%20A.&rft.date=2012-09-01&rft.volume=14&rft.issue=5&rft.spage=528&rft.epage=532&rft.pages=528-532&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2012.06.004&rft_dat=%3Cproquest_cross%3E1035530802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035530802&rft_id=info:pmid/22781282&rft_els_id=S1096717612000699&rfr_iscdi=true |