Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production

Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2012-09, Vol.14 (5), p.528-532
Hauptverfasser: Joe Shaw, A., Covalla, Sean F., Miller, Bethany B., Firliet, Brian T., Hogsett, David A., Herring, Christopher D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 5
container_start_page 528
container_title Metabolic engineering
container_volume 14
creator Joe Shaw, A.
Covalla, Sean F.
Miller, Bethany B.
Firliet, Brian T.
Hogsett, David A.
Herring, Christopher D.
description Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable. ► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.
doi_str_mv 10.1016/j.ymben.2012.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038614749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717612000699</els_id><sourcerecordid>1035530802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EoqXtJ0CCHLlsOnYcO3vggCr-SZV6oHu2JvZk41USL3ZS2G-Pl217RJxsa37vzYwfY285lBy4ut6Vh7GlqRTARQmqBJAv2DmHtVpp3siXz3etztiblHYAnNdr_pqdCaEbLhpxzsZNJExU0O99pJR8mAo_FVjc9xTHgBNSDC3amaJfxiKhtT3GMBxmb_Ob5h6nMIQtZc0whF-p6P22L2afBU_VYh-DW-ycvS_Zqw6HRFeP5wXbfPl8f_NtdXv39fvNp9uVlVzNK8obUe2kkFALkqqxSusGHQC2spVdZwlrEHatdVWj65quk1hzcE6jrISsLtiHk29u_XOhNJvRJ0vDgBOFJRkOVaO41HL9P2hdV9CAyGh1Qm0MKUXqzD76EeMhQ-YYidmZv5GYYyQGlMmRZNW7xwZLO5J71jxlkIH3J6DDYHAbfTKbH9lB5bx0nvJo8fFEUP6zB0_RJOtpsuR8JDsbF_w_R_gDcJCpSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035530802</pqid></control><display><type>article</type><title>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Joe Shaw, A. ; Covalla, Sean F. ; Miller, Bethany B. ; Firliet, Brian T. ; Hogsett, David A. ; Herring, Christopher D.</creator><creatorcontrib>Joe Shaw, A. ; Covalla, Sean F. ; Miller, Bethany B. ; Firliet, Brian T. ; Hogsett, David A. ; Herring, Christopher D.</creatorcontrib><description>Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable. ► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2012.06.004</identifier><identifier>PMID: 22781282</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Ammonium ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Biofuels ; Clostridium thermocellum - enzymology ; Clostridium thermocellum - genetics ; Enzymes ; Ethanol ; Ethanol - metabolism ; Fermentation ; Gene Expression ; Hydrogen-Ion Concentration ; metabolic engineering ; Osmotic Pressure ; pH effects ; Salts ; Stress ; Thermoanaerobacterium - enzymology ; Thermoanaerobacterium - genetics ; Thermoanaerobacterium - growth &amp; development ; Thermophiles ; Urea ; Urea - metabolism ; Urease ; Urease - biosynthesis ; Urease - genetics</subject><ispartof>Metabolic engineering, 2012-09, Vol.14 (5), p.528-532</ispartof><rights>2012</rights><rights>Copyright © 2012. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</citedby><cites>FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2012.06.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22781282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joe Shaw, A.</creatorcontrib><creatorcontrib>Covalla, Sean F.</creatorcontrib><creatorcontrib>Miller, Bethany B.</creatorcontrib><creatorcontrib>Firliet, Brian T.</creatorcontrib><creatorcontrib>Hogsett, David A.</creatorcontrib><creatorcontrib>Herring, Christopher D.</creatorcontrib><title>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable. ► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.</description><subject>Ammonium</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofuels</subject><subject>Clostridium thermocellum - enzymology</subject><subject>Clostridium thermocellum - genetics</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Gene Expression</subject><subject>Hydrogen-Ion Concentration</subject><subject>metabolic engineering</subject><subject>Osmotic Pressure</subject><subject>pH effects</subject><subject>Salts</subject><subject>Stress</subject><subject>Thermoanaerobacterium - enzymology</subject><subject>Thermoanaerobacterium - genetics</subject><subject>Thermoanaerobacterium - growth &amp; development</subject><subject>Thermophiles</subject><subject>Urea</subject><subject>Urea - metabolism</subject><subject>Urease</subject><subject>Urease - biosynthesis</subject><subject>Urease - genetics</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EoqXtJ0CCHLlsOnYcO3vggCr-SZV6oHu2JvZk41USL3ZS2G-Pl217RJxsa37vzYwfY285lBy4ut6Vh7GlqRTARQmqBJAv2DmHtVpp3siXz3etztiblHYAnNdr_pqdCaEbLhpxzsZNJExU0O99pJR8mAo_FVjc9xTHgBNSDC3amaJfxiKhtT3GMBxmb_Ob5h6nMIQtZc0whF-p6P22L2afBU_VYh-DW-ycvS_Zqw6HRFeP5wXbfPl8f_NtdXv39fvNp9uVlVzNK8obUe2kkFALkqqxSusGHQC2spVdZwlrEHatdVWj65quk1hzcE6jrISsLtiHk29u_XOhNJvRJ0vDgBOFJRkOVaO41HL9P2hdV9CAyGh1Qm0MKUXqzD76EeMhQ-YYidmZv5GYYyQGlMmRZNW7xwZLO5J71jxlkIH3J6DDYHAbfTKbH9lB5bx0nvJo8fFEUP6zB0_RJOtpsuR8JDsbF_w_R_gDcJCpSA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Joe Shaw, A.</creator><creator>Covalla, Sean F.</creator><creator>Miller, Bethany B.</creator><creator>Firliet, Brian T.</creator><creator>Hogsett, David A.</creator><creator>Herring, Christopher D.</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120901</creationdate><title>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</title><author>Joe Shaw, A. ; Covalla, Sean F. ; Miller, Bethany B. ; Firliet, Brian T. ; Hogsett, David A. ; Herring, Christopher D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e012e5d424052e468c6778ad00ab4b4ffcea502c97735adf8ff4a510dd7a43243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonium</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofuels</topic><topic>Clostridium thermocellum - enzymology</topic><topic>Clostridium thermocellum - genetics</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Gene Expression</topic><topic>Hydrogen-Ion Concentration</topic><topic>metabolic engineering</topic><topic>Osmotic Pressure</topic><topic>pH effects</topic><topic>Salts</topic><topic>Stress</topic><topic>Thermoanaerobacterium - enzymology</topic><topic>Thermoanaerobacterium - genetics</topic><topic>Thermoanaerobacterium - growth &amp; development</topic><topic>Thermophiles</topic><topic>Urea</topic><topic>Urea - metabolism</topic><topic>Urease</topic><topic>Urease - biosynthesis</topic><topic>Urease - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joe Shaw, A.</creatorcontrib><creatorcontrib>Covalla, Sean F.</creatorcontrib><creatorcontrib>Miller, Bethany B.</creatorcontrib><creatorcontrib>Firliet, Brian T.</creatorcontrib><creatorcontrib>Hogsett, David A.</creatorcontrib><creatorcontrib>Herring, Christopher D.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joe Shaw, A.</au><au>Covalla, Sean F.</au><au>Miller, Bethany B.</au><au>Firliet, Brian T.</au><au>Hogsett, David A.</au><au>Herring, Christopher D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>5</issue><spage>528</spage><epage>532</epage><pages>528-532</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable. ► Genes encoding urease were integrated in a T. saccharolyticum ethanologen. ► Replacement of ammonium salts with urea resulted in production of 54g/L ethanol. ► Urea utilization is attractive for industrial scale fermentation.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>22781282</pmid><doi>10.1016/j.ymben.2012.06.004</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2012-09, Vol.14 (5), p.528-532
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_1038614749
source MEDLINE; Elsevier ScienceDirect Journals
subjects Ammonium
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Biofuels
Clostridium thermocellum - enzymology
Clostridium thermocellum - genetics
Enzymes
Ethanol
Ethanol - metabolism
Fermentation
Gene Expression
Hydrogen-Ion Concentration
metabolic engineering
Osmotic Pressure
pH effects
Salts
Stress
Thermoanaerobacterium - enzymology
Thermoanaerobacterium - genetics
Thermoanaerobacterium - growth & development
Thermophiles
Urea
Urea - metabolism
Urease
Urease - biosynthesis
Urease - genetics
title Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urease%20expression%20in%20a%20Thermoanaerobacterium%20saccharolyticum%20ethanologen%20allows%20high%20titer%20ethanol%20production&rft.jtitle=Metabolic%20engineering&rft.au=Joe%20Shaw,%20A.&rft.date=2012-09-01&rft.volume=14&rft.issue=5&rft.spage=528&rft.epage=532&rft.pages=528-532&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2012.06.004&rft_dat=%3Cproquest_cross%3E1035530802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035530802&rft_id=info:pmid/22781282&rft_els_id=S1096717612000699&rfr_iscdi=true