The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces

Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted] ► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and biochemical parasitology 2012-07, Vol.184 (1), p.13-19
Hauptverfasser: Palenchar, Peter M., Palenchar, Jennifer B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 13
container_title Molecular and biochemical parasitology
container_volume 184
creator Palenchar, Peter M.
Palenchar, Jennifer B.
description Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted] ► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly. Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.
doi_str_mv 10.1016/j.molbiopara.2012.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038609101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166685112000783</els_id><sourcerecordid>1015247368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5039f0ad136606815061ff9c28d6fc5c40c947702756c1e6741588fb308af23a3</originalsourceid><addsrcrecordid>eNqNkVtv1DAQhS0EokvhL4AfeUkY2_Elj1CVi1QJpG2fLa9js17F8WInldJfj1dbLm_wNNLMd2aO5iCECbQEiHh3aGMadyEdTTYtBUJbYC2AfII2REna9B1VT9GmoqIRipML9KKUAwBwKcRzdEFp1ysG_Qatt3uH3X0alzmkCSePo5vNLo3BYjc9rNEVHCb8bTQlpiEsEZtpwHNej2ZKJUUzh6FgU7BNsbpxdZbw1li7NznF1Vb5SbC1-_CQyt_9l-iZN2Nxrx7rJbr7eH179bm5-frpy9X7m8YyKeaGA-s9mIEwIUAowkEQ73tL1SC85bYD23dSApVcWOKE7AhXyu8YKOMpM-wSvT3vPeb0Y3Fl1jEU68bRTC4tRRNgSkBf__ofKOG0k0yoiqozanMqJTuvjzlEk9cKnTihD_pPRvqUkQama0ZV-vrxyrKLbvgt_BVKBd6cAW-SNt9zKPpuWzdwANIR2otKfDgTrj7uPrisiw1usm4I2dlZDyn828dPWiWyPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015247368</pqid></control><display><type>article</type><title>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Palenchar, Peter M. ; Palenchar, Jennifer B.</creator><creatorcontrib>Palenchar, Peter M. ; Palenchar, Jennifer B.</creatorcontrib><description>Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted] ► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly. Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.</description><identifier>ISSN: 0166-6851</identifier><identifier>EISSN: 1872-9428</identifier><identifier>DOI: 10.1016/j.molbiopara.2012.03.007</identifier><identifier>PMID: 22498309</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amino Acid Substitution ; Connectivity ; enzymes ; Eukaryota ; eukaryotic cells ; Evolution ; Evolution, Molecular ; genes ; Metabolic network ; Metabolic Networks and Pathways - genetics ; Metabolism ; Parasite ; parasitology ; Plasmodium falciparum ; Plasmodium falciparum - enzymology ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; proteins ; Protist ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Schizosaccharomyces ; Schizosaccharomyces - enzymology ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Trypanosoma brucei ; Trypanosoma brucei brucei - enzymology ; Trypanosoma brucei brucei - genetics ; Trypanosoma brucei brucei - metabolism</subject><ispartof>Molecular and biochemical parasitology, 2012-07, Vol.184 (1), p.13-19</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-5039f0ad136606815061ff9c28d6fc5c40c947702756c1e6741588fb308af23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molbiopara.2012.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22498309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palenchar, Peter M.</creatorcontrib><creatorcontrib>Palenchar, Jennifer B.</creatorcontrib><title>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</title><title>Molecular and biochemical parasitology</title><addtitle>Mol Biochem Parasitol</addtitle><description>Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted] ► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly. Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.</description><subject>Amino Acid Substitution</subject><subject>Connectivity</subject><subject>enzymes</subject><subject>Eukaryota</subject><subject>eukaryotic cells</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>genes</subject><subject>Metabolic network</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Parasite</subject><subject>parasitology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>proteins</subject><subject>Protist</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Schizosaccharomyces</subject><subject>Schizosaccharomyces - enzymology</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Trypanosoma brucei</subject><subject>Trypanosoma brucei brucei - enzymology</subject><subject>Trypanosoma brucei brucei - genetics</subject><subject>Trypanosoma brucei brucei - metabolism</subject><issn>0166-6851</issn><issn>1872-9428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtv1DAQhS0EokvhL4AfeUkY2_Elj1CVi1QJpG2fLa9js17F8WInldJfj1dbLm_wNNLMd2aO5iCECbQEiHh3aGMadyEdTTYtBUJbYC2AfII2REna9B1VT9GmoqIRipML9KKUAwBwKcRzdEFp1ysG_Qatt3uH3X0alzmkCSePo5vNLo3BYjc9rNEVHCb8bTQlpiEsEZtpwHNej2ZKJUUzh6FgU7BNsbpxdZbw1li7NznF1Vb5SbC1-_CQyt_9l-iZN2Nxrx7rJbr7eH179bm5-frpy9X7m8YyKeaGA-s9mIEwIUAowkEQ73tL1SC85bYD23dSApVcWOKE7AhXyu8YKOMpM-wSvT3vPeb0Y3Fl1jEU68bRTC4tRRNgSkBf__ofKOG0k0yoiqozanMqJTuvjzlEk9cKnTihD_pPRvqUkQama0ZV-vrxyrKLbvgt_BVKBd6cAW-SNt9zKPpuWzdwANIR2otKfDgTrj7uPrisiw1usm4I2dlZDyn828dPWiWyPg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Palenchar, Peter M.</creator><creator>Palenchar, Jennifer B.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20120701</creationdate><title>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</title><author>Palenchar, Peter M. ; Palenchar, Jennifer B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5039f0ad136606815061ff9c28d6fc5c40c947702756c1e6741588fb308af23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Substitution</topic><topic>Connectivity</topic><topic>enzymes</topic><topic>Eukaryota</topic><topic>eukaryotic cells</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>genes</topic><topic>Metabolic network</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Parasite</topic><topic>parasitology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>proteins</topic><topic>Protist</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Schizosaccharomyces</topic><topic>Schizosaccharomyces - enzymology</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Trypanosoma brucei</topic><topic>Trypanosoma brucei brucei - enzymology</topic><topic>Trypanosoma brucei brucei - genetics</topic><topic>Trypanosoma brucei brucei - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palenchar, Peter M.</creatorcontrib><creatorcontrib>Palenchar, Jennifer B.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Molecular and biochemical parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palenchar, Peter M.</au><au>Palenchar, Jennifer B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</atitle><jtitle>Molecular and biochemical parasitology</jtitle><addtitle>Mol Biochem Parasitol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>184</volume><issue>1</issue><spage>13</spage><epage>19</epage><pages>13-19</pages><issn>0166-6851</issn><eissn>1872-9428</eissn><abstract>Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted] ► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly. Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22498309</pmid><doi>10.1016/j.molbiopara.2012.03.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-6851
ispartof Molecular and biochemical parasitology, 2012-07, Vol.184 (1), p.13-19
issn 0166-6851
1872-9428
language eng
recordid cdi_proquest_miscellaneous_1038609101
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Substitution
Connectivity
enzymes
Eukaryota
eukaryotic cells
Evolution
Evolution, Molecular
genes
Metabolic network
Metabolic Networks and Pathways - genetics
Metabolism
Parasite
parasitology
Plasmodium falciparum
Plasmodium falciparum - enzymology
Plasmodium falciparum - genetics
Plasmodium falciparum - metabolism
proteins
Protist
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Schizosaccharomyces
Schizosaccharomyces - enzymology
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe
Trypanosoma brucei
Trypanosoma brucei brucei - enzymology
Trypanosoma brucei brucei - genetics
Trypanosoma brucei brucei - metabolism
title The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20metabolic%20enzymes%20in%20Plasmodium%20and%20trypanosomatids%20as%20compared%20to%20Saccharomyces%20and%20Schizosaccharomyces&rft.jtitle=Molecular%20and%20biochemical%20parasitology&rft.au=Palenchar,%20Peter%20M.&rft.date=2012-07-01&rft.volume=184&rft.issue=1&rft.spage=13&rft.epage=19&rft.pages=13-19&rft.issn=0166-6851&rft.eissn=1872-9428&rft_id=info:doi/10.1016/j.molbiopara.2012.03.007&rft_dat=%3Cproquest_cross%3E1015247368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015247368&rft_id=info:pmid/22498309&rft_els_id=S0166685112000783&rfr_iscdi=true