The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces
Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted] ► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested,...
Gespeichert in:
Veröffentlicht in: | Molecular and biochemical parasitology 2012-07, Vol.184 (1), p.13-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Molecular and biochemical parasitology |
container_volume | 184 |
creator | Palenchar, Peter M. Palenchar, Jennifer B. |
description | Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted]
► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly.
Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network. |
doi_str_mv | 10.1016/j.molbiopara.2012.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038609101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166685112000783</els_id><sourcerecordid>1015247368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5039f0ad136606815061ff9c28d6fc5c40c947702756c1e6741588fb308af23a3</originalsourceid><addsrcrecordid>eNqNkVtv1DAQhS0EokvhL4AfeUkY2_Elj1CVi1QJpG2fLa9js17F8WInldJfj1dbLm_wNNLMd2aO5iCECbQEiHh3aGMadyEdTTYtBUJbYC2AfII2REna9B1VT9GmoqIRipML9KKUAwBwKcRzdEFp1ysG_Qatt3uH3X0alzmkCSePo5vNLo3BYjc9rNEVHCb8bTQlpiEsEZtpwHNej2ZKJUUzh6FgU7BNsbpxdZbw1li7NznF1Vb5SbC1-_CQyt_9l-iZN2Nxrx7rJbr7eH179bm5-frpy9X7m8YyKeaGA-s9mIEwIUAowkEQ73tL1SC85bYD23dSApVcWOKE7AhXyu8YKOMpM-wSvT3vPeb0Y3Fl1jEU68bRTC4tRRNgSkBf__ofKOG0k0yoiqozanMqJTuvjzlEk9cKnTihD_pPRvqUkQama0ZV-vrxyrKLbvgt_BVKBd6cAW-SNt9zKPpuWzdwANIR2otKfDgTrj7uPrisiw1usm4I2dlZDyn828dPWiWyPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015247368</pqid></control><display><type>article</type><title>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Palenchar, Peter M. ; Palenchar, Jennifer B.</creator><creatorcontrib>Palenchar, Peter M. ; Palenchar, Jennifer B.</creatorcontrib><description>Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted]
► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly.
Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.</description><identifier>ISSN: 0166-6851</identifier><identifier>EISSN: 1872-9428</identifier><identifier>DOI: 10.1016/j.molbiopara.2012.03.007</identifier><identifier>PMID: 22498309</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amino Acid Substitution ; Connectivity ; enzymes ; Eukaryota ; eukaryotic cells ; Evolution ; Evolution, Molecular ; genes ; Metabolic network ; Metabolic Networks and Pathways - genetics ; Metabolism ; Parasite ; parasitology ; Plasmodium falciparum ; Plasmodium falciparum - enzymology ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; proteins ; Protist ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Schizosaccharomyces ; Schizosaccharomyces - enzymology ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Trypanosoma brucei ; Trypanosoma brucei brucei - enzymology ; Trypanosoma brucei brucei - genetics ; Trypanosoma brucei brucei - metabolism</subject><ispartof>Molecular and biochemical parasitology, 2012-07, Vol.184 (1), p.13-19</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-5039f0ad136606815061ff9c28d6fc5c40c947702756c1e6741588fb308af23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molbiopara.2012.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22498309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palenchar, Peter M.</creatorcontrib><creatorcontrib>Palenchar, Jennifer B.</creatorcontrib><title>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</title><title>Molecular and biochemical parasitology</title><addtitle>Mol Biochem Parasitol</addtitle><description>Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted]
► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly.
Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.</description><subject>Amino Acid Substitution</subject><subject>Connectivity</subject><subject>enzymes</subject><subject>Eukaryota</subject><subject>eukaryotic cells</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>genes</subject><subject>Metabolic network</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Parasite</subject><subject>parasitology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>proteins</subject><subject>Protist</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Schizosaccharomyces</subject><subject>Schizosaccharomyces - enzymology</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Trypanosoma brucei</subject><subject>Trypanosoma brucei brucei - enzymology</subject><subject>Trypanosoma brucei brucei - genetics</subject><subject>Trypanosoma brucei brucei - metabolism</subject><issn>0166-6851</issn><issn>1872-9428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtv1DAQhS0EokvhL4AfeUkY2_Elj1CVi1QJpG2fLa9js17F8WInldJfj1dbLm_wNNLMd2aO5iCECbQEiHh3aGMadyEdTTYtBUJbYC2AfII2REna9B1VT9GmoqIRipML9KKUAwBwKcRzdEFp1ysG_Qatt3uH3X0alzmkCSePo5vNLo3BYjc9rNEVHCb8bTQlpiEsEZtpwHNej2ZKJUUzh6FgU7BNsbpxdZbw1li7NznF1Vb5SbC1-_CQyt_9l-iZN2Nxrx7rJbr7eH179bm5-frpy9X7m8YyKeaGA-s9mIEwIUAowkEQ73tL1SC85bYD23dSApVcWOKE7AhXyu8YKOMpM-wSvT3vPeb0Y3Fl1jEU68bRTC4tRRNgSkBf__ofKOG0k0yoiqozanMqJTuvjzlEk9cKnTihD_pPRvqUkQama0ZV-vrxyrKLbvgt_BVKBd6cAW-SNt9zKPpuWzdwANIR2otKfDgTrj7uPrisiw1usm4I2dlZDyn828dPWiWyPg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Palenchar, Peter M.</creator><creator>Palenchar, Jennifer B.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20120701</creationdate><title>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</title><author>Palenchar, Peter M. ; Palenchar, Jennifer B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5039f0ad136606815061ff9c28d6fc5c40c947702756c1e6741588fb308af23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Substitution</topic><topic>Connectivity</topic><topic>enzymes</topic><topic>Eukaryota</topic><topic>eukaryotic cells</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>genes</topic><topic>Metabolic network</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Parasite</topic><topic>parasitology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>proteins</topic><topic>Protist</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Schizosaccharomyces</topic><topic>Schizosaccharomyces - enzymology</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Trypanosoma brucei</topic><topic>Trypanosoma brucei brucei - enzymology</topic><topic>Trypanosoma brucei brucei - genetics</topic><topic>Trypanosoma brucei brucei - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palenchar, Peter M.</creatorcontrib><creatorcontrib>Palenchar, Jennifer B.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Molecular and biochemical parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palenchar, Peter M.</au><au>Palenchar, Jennifer B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces</atitle><jtitle>Molecular and biochemical parasitology</jtitle><addtitle>Mol Biochem Parasitol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>184</volume><issue>1</issue><spage>13</spage><epage>19</epage><pages>13-19</pages><issn>0166-6851</issn><eissn>1872-9428</eissn><abstract>Ka was calculated by comparing T. brucei genes to the corresponding orthologs in the given organisms. The mean Ka and the standard error are displayed. [Display omitted]
► Genes encoding enzymes evolve differently than genes encoding non-metabolic proteins. ► In a significant number of cases tested, there is a link between connectivity and evolution. ► Genes encoding enzymes in the organism analyzed have evolved similarly.
Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined Ka values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower Ka values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the Ka value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the Ka values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22498309</pmid><doi>10.1016/j.molbiopara.2012.03.007</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-6851 |
ispartof | Molecular and biochemical parasitology, 2012-07, Vol.184 (1), p.13-19 |
issn | 0166-6851 1872-9428 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038609101 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amino Acid Substitution Connectivity enzymes Eukaryota eukaryotic cells Evolution Evolution, Molecular genes Metabolic network Metabolic Networks and Pathways - genetics Metabolism Parasite parasitology Plasmodium falciparum Plasmodium falciparum - enzymology Plasmodium falciparum - genetics Plasmodium falciparum - metabolism proteins Protist Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Schizosaccharomyces Schizosaccharomyces - enzymology Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Trypanosoma brucei Trypanosoma brucei brucei - enzymology Trypanosoma brucei brucei - genetics Trypanosoma brucei brucei - metabolism |
title | The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20metabolic%20enzymes%20in%20Plasmodium%20and%20trypanosomatids%20as%20compared%20to%20Saccharomyces%20and%20Schizosaccharomyces&rft.jtitle=Molecular%20and%20biochemical%20parasitology&rft.au=Palenchar,%20Peter%20M.&rft.date=2012-07-01&rft.volume=184&rft.issue=1&rft.spage=13&rft.epage=19&rft.pages=13-19&rft.issn=0166-6851&rft.eissn=1872-9428&rft_id=info:doi/10.1016/j.molbiopara.2012.03.007&rft_dat=%3Cproquest_cross%3E1015247368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015247368&rft_id=info:pmid/22498309&rft_els_id=S0166685112000783&rfr_iscdi=true |