Dynamic neural systems enable adaptive, flexible memories

Almost all studies on memory formation have implicitly put forward a rather static view on memory. However, memories are not stable but sensitive to changes over time. Here we argue that memory alterations arise from the inherent predictive function of memory. Within this framework, we draw an analo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience and biobehavioral reviews 2012-08, Vol.36 (7), p.1646-1666
Hauptverfasser: Kroes, Marijn C W, Fernández, Guillén
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1666
container_issue 7
container_start_page 1646
container_title Neuroscience and biobehavioral reviews
container_volume 36
creator Kroes, Marijn C W
Fernández, Guillén
description Almost all studies on memory formation have implicitly put forward a rather static view on memory. However, memories are not stable but sensitive to changes over time. Here we argue that memory alterations arise from the inherent predictive function of memory. Within this framework, we draw an analogy between the lateral temporal-lateral prefrontal system that supports prediction based on simple stimulus-response associations and propose that a similar system centring on the hippocampus and medial prefrontal cortex (mPFC) exists for complex episodic memories. We consider the hippocampus to be elementary for regularity detection and the mPFC for regularity storage together with response options, which form the basis of abstract knowledge. As such, abstract knowledge can come to guide behaviour in novel situations that only share partial overlap with episodic experiences that have given rise to the formation of abstract knowledge. Furthermore, we suggest that systems consolidation and sleep contribute to the formation of abstract knowledge, and that abstract knowledge can function as pre-existing schemas to the encoding of novel memories. Finally, we discuss that reconsolidation supports the updating of memories to optimize prediction. We accentuate that memory formation requires dynamic interactions between brain regions, and that rapid formation of detailed memories depends on synaptic weight changes, whereas rather stable abstract knowledge is supported by cortico-cortical rewiring. Together, we attempt explaining that apparent memory alterations and distortions are adaptive.
doi_str_mv 10.1016/j.neubiorev.2012.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038602617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038602617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-cd1818ef3dafd7a5a5809f413876a77f68e65442fc947780c1f5e3a385bdf01f3</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRbK3-Bc3ShYlz552l1CcU3Oh6mCR3ICWPOpMU--9NqXYtHLhw-M65cAi5AZoBBXW_zjoci7oPuM0YBZbRSSBOyByM5qmWzJyS-eTkqVZczMhFjGtKKaNcnpMZY0YLqfM5yR93nWvrMpn6gmuSuIsDtjHBzhUNJq5ym6He4l3iG_yu91aLbR9qjJfkzLsm4tXvXZDP56eP5Wu6en95Wz6s0pILNaRlBQYMel45X2knnTQ09wK40cpp7ZVBJYVgvsyF1oaW4CVyx40sKk_B8wW5PfRuQv81YhxsW8cSm8Z12I_RAuVGUaZA_wflIBXkakL1AS1DH2NAbzehbl3YTZDdT2zX9jix3U9s6SQQU_L698lYtFgdc3-b8h_w_Xob</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033156196</pqid></control><display><type>article</type><title>Dynamic neural systems enable adaptive, flexible memories</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kroes, Marijn C W ; Fernández, Guillén</creator><creatorcontrib>Kroes, Marijn C W ; Fernández, Guillén</creatorcontrib><description>Almost all studies on memory formation have implicitly put forward a rather static view on memory. However, memories are not stable but sensitive to changes over time. Here we argue that memory alterations arise from the inherent predictive function of memory. Within this framework, we draw an analogy between the lateral temporal-lateral prefrontal system that supports prediction based on simple stimulus-response associations and propose that a similar system centring on the hippocampus and medial prefrontal cortex (mPFC) exists for complex episodic memories. We consider the hippocampus to be elementary for regularity detection and the mPFC for regularity storage together with response options, which form the basis of abstract knowledge. As such, abstract knowledge can come to guide behaviour in novel situations that only share partial overlap with episodic experiences that have given rise to the formation of abstract knowledge. Furthermore, we suggest that systems consolidation and sleep contribute to the formation of abstract knowledge, and that abstract knowledge can function as pre-existing schemas to the encoding of novel memories. Finally, we discuss that reconsolidation supports the updating of memories to optimize prediction. We accentuate that memory formation requires dynamic interactions between brain regions, and that rapid formation of detailed memories depends on synaptic weight changes, whereas rather stable abstract knowledge is supported by cortico-cortical rewiring. Together, we attempt explaining that apparent memory alterations and distortions are adaptive.</description><identifier>ISSN: 0149-7634</identifier><identifier>EISSN: 1873-7528</identifier><identifier>DOI: 10.1016/j.neubiorev.2012.02.014</identifier><identifier>PMID: 22874579</identifier><language>eng</language><publisher>United States</publisher><subject>Adaptation, Physiological ; Animals ; Brain ; Brain - physiology ; Cortex (prefrontal) ; Hippocampus ; Humans ; Memory ; Memory - physiology ; Nerve Net - physiology ; Nervous system ; Neuronal Plasticity - physiology ; Sleep ; Sleep - physiology ; Synaptic strength</subject><ispartof>Neuroscience and biobehavioral reviews, 2012-08, Vol.36 (7), p.1646-1666</ispartof><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-cd1818ef3dafd7a5a5809f413876a77f68e65442fc947780c1f5e3a385bdf01f3</citedby><cites>FETCH-LOGICAL-c346t-cd1818ef3dafd7a5a5809f413876a77f68e65442fc947780c1f5e3a385bdf01f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22874579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kroes, Marijn C W</creatorcontrib><creatorcontrib>Fernández, Guillén</creatorcontrib><title>Dynamic neural systems enable adaptive, flexible memories</title><title>Neuroscience and biobehavioral reviews</title><addtitle>Neurosci Biobehav Rev</addtitle><description>Almost all studies on memory formation have implicitly put forward a rather static view on memory. However, memories are not stable but sensitive to changes over time. Here we argue that memory alterations arise from the inherent predictive function of memory. Within this framework, we draw an analogy between the lateral temporal-lateral prefrontal system that supports prediction based on simple stimulus-response associations and propose that a similar system centring on the hippocampus and medial prefrontal cortex (mPFC) exists for complex episodic memories. We consider the hippocampus to be elementary for regularity detection and the mPFC for regularity storage together with response options, which form the basis of abstract knowledge. As such, abstract knowledge can come to guide behaviour in novel situations that only share partial overlap with episodic experiences that have given rise to the formation of abstract knowledge. Furthermore, we suggest that systems consolidation and sleep contribute to the formation of abstract knowledge, and that abstract knowledge can function as pre-existing schemas to the encoding of novel memories. Finally, we discuss that reconsolidation supports the updating of memories to optimize prediction. We accentuate that memory formation requires dynamic interactions between brain regions, and that rapid formation of detailed memories depends on synaptic weight changes, whereas rather stable abstract knowledge is supported by cortico-cortical rewiring. Together, we attempt explaining that apparent memory alterations and distortions are adaptive.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Cortex (prefrontal)</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neuronal Plasticity - physiology</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Synaptic strength</subject><issn>0149-7634</issn><issn>1873-7528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtLw0AUhQdRbK3-Bc3ShYlz552l1CcU3Oh6mCR3ICWPOpMU--9NqXYtHLhw-M65cAi5AZoBBXW_zjoci7oPuM0YBZbRSSBOyByM5qmWzJyS-eTkqVZczMhFjGtKKaNcnpMZY0YLqfM5yR93nWvrMpn6gmuSuIsDtjHBzhUNJq5ym6He4l3iG_yu91aLbR9qjJfkzLsm4tXvXZDP56eP5Wu6en95Wz6s0pILNaRlBQYMel45X2knnTQ09wK40cpp7ZVBJYVgvsyF1oaW4CVyx40sKk_B8wW5PfRuQv81YhxsW8cSm8Z12I_RAuVGUaZA_wflIBXkakL1AS1DH2NAbzehbl3YTZDdT2zX9jix3U9s6SQQU_L698lYtFgdc3-b8h_w_Xob</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Kroes, Marijn C W</creator><creator>Fernández, Guillén</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope></search><sort><creationdate>201208</creationdate><title>Dynamic neural systems enable adaptive, flexible memories</title><author>Kroes, Marijn C W ; Fernández, Guillén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-cd1818ef3dafd7a5a5809f413876a77f68e65442fc947780c1f5e3a385bdf01f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Cortex (prefrontal)</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neuronal Plasticity - physiology</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Synaptic strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroes, Marijn C W</creatorcontrib><creatorcontrib>Fernández, Guillén</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuroscience and biobehavioral reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroes, Marijn C W</au><au>Fernández, Guillén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic neural systems enable adaptive, flexible memories</atitle><jtitle>Neuroscience and biobehavioral reviews</jtitle><addtitle>Neurosci Biobehav Rev</addtitle><date>2012-08</date><risdate>2012</risdate><volume>36</volume><issue>7</issue><spage>1646</spage><epage>1666</epage><pages>1646-1666</pages><issn>0149-7634</issn><eissn>1873-7528</eissn><abstract>Almost all studies on memory formation have implicitly put forward a rather static view on memory. However, memories are not stable but sensitive to changes over time. Here we argue that memory alterations arise from the inherent predictive function of memory. Within this framework, we draw an analogy between the lateral temporal-lateral prefrontal system that supports prediction based on simple stimulus-response associations and propose that a similar system centring on the hippocampus and medial prefrontal cortex (mPFC) exists for complex episodic memories. We consider the hippocampus to be elementary for regularity detection and the mPFC for regularity storage together with response options, which form the basis of abstract knowledge. As such, abstract knowledge can come to guide behaviour in novel situations that only share partial overlap with episodic experiences that have given rise to the formation of abstract knowledge. Furthermore, we suggest that systems consolidation and sleep contribute to the formation of abstract knowledge, and that abstract knowledge can function as pre-existing schemas to the encoding of novel memories. Finally, we discuss that reconsolidation supports the updating of memories to optimize prediction. We accentuate that memory formation requires dynamic interactions between brain regions, and that rapid formation of detailed memories depends on synaptic weight changes, whereas rather stable abstract knowledge is supported by cortico-cortical rewiring. Together, we attempt explaining that apparent memory alterations and distortions are adaptive.</abstract><cop>United States</cop><pmid>22874579</pmid><doi>10.1016/j.neubiorev.2012.02.014</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-7634
ispartof Neuroscience and biobehavioral reviews, 2012-08, Vol.36 (7), p.1646-1666
issn 0149-7634
1873-7528
language eng
recordid cdi_proquest_miscellaneous_1038602617
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adaptation, Physiological
Animals
Brain
Brain - physiology
Cortex (prefrontal)
Hippocampus
Humans
Memory
Memory - physiology
Nerve Net - physiology
Nervous system
Neuronal Plasticity - physiology
Sleep
Sleep - physiology
Synaptic strength
title Dynamic neural systems enable adaptive, flexible memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20neural%20systems%20enable%20adaptive,%20flexible%20memories&rft.jtitle=Neuroscience%20and%20biobehavioral%20reviews&rft.au=Kroes,%20Marijn%20C%20W&rft.date=2012-08&rft.volume=36&rft.issue=7&rft.spage=1646&rft.epage=1666&rft.pages=1646-1666&rft.issn=0149-7634&rft.eissn=1873-7528&rft_id=info:doi/10.1016/j.neubiorev.2012.02.014&rft_dat=%3Cproquest_cross%3E1038602617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033156196&rft_id=info:pmid/22874579&rfr_iscdi=true