Experimental kinetics and dynamics of hydrogen production on glucose by hydrogen forming bacteria (HFB) culture

The kinetic study was performed using a modified “initial rate-method” and the dynamic ones by the relaxation time methodology. The approach was tested on glucose as sole carbon source while the hydrogen forming bacteria HFB were obtained by acid treatment of anaerobic sludge. A large spectrum of su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2009, Vol.34 (2), p.753-763
Hauptverfasser: Ruggeri, B., Tommasi, T., Sassi, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kinetic study was performed using a modified “initial rate-method” and the dynamic ones by the relaxation time methodology. The approach was tested on glucose as sole carbon source while the hydrogen forming bacteria HFB were obtained by acid treatment of anaerobic sludge. A large spectrum of substrate concentration from 5 g/l to 90 g/l was experimentally tested. During the test biogas evolution, gas composition, glucose concentration as well as pH and Red-Ox Potential (ROP) were monitored. At the end of the tests ethanol and VFA were measured to evaluate a reference molar H 2 yield ( Y*). The biogas composition ranged in (40–60%) for H 2 and rest CO 2, no CH 4 was observed. A first order kinetic equation for glucose with a kinetic constant of 0.0041 h −1 and an inhibited kinetic equation for biogas evolution with a maximum production rate of 100 ml/l h were set-up. The dynamic study evidences the strong role of the pH in the regulation of activity of the Ferrodoxin and Hydrogenase pools. Lastly a test with a bioreactor of 2 l with pH adjustments validated the dynamics of the system showing an increase of 2.8 times of efficiency of glucose conversion into H 2 compared with tests without pH adjustments and agitation.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2008.10.076