Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems

It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water environment research 2012-08, Vol.84 (8), p.656-661
Hauptverfasser: Cong, Li, Yang, Y. Jeffrey, Jieze, Yu, Tu-qiao, Zhang, Xinwei, Mao, Weiyun, Shao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 8
container_start_page 656
container_title Water environment research
container_volume 84
creator Cong, Li
Yang, Y. Jeffrey
Jieze, Yu
Tu-qiao, Zhang
Xinwei, Mao
Weiyun, Shao
description It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).
doi_str_mv 10.2175/106143012X13373550427390
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038601587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42569465</jstor_id><sourcerecordid>42569465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-c1c70b7015db1d164104cbe034610a68d58a2890b5e337e665202ad216231ef63</originalsourceid><addsrcrecordid>eNqN0U1r3DAQBmBRUpqP9ic0CEKgFzejb_uQQ9kkbSGQ0E1Jb0aWZ1kttpVKNmH_fbXZbQqFQE7S4XlHoxlCKIPPnBl1xkAzKYDxX0wII5QCyY2o4A05YErJwijB9vI9syI7sU8OU1pBDnCQ78g-55USUsEBwTm6MLTFTWwx0tmyC9EPSC_Q2TW1Q0vvol_aLvQ4Lu2AiV6F2NvRh4H6gVp667swFnNnO6T3dsw1Lnwao2-mJzNfpxH79J68Xdgu4YfdeUR-Xl3ezb4V1zdfv8--XBdOykoXjjkDjQGm2oa1TEsG0jUIQmoGVpetKi0vK2gU5m-j1ooDty1nmguGCy2OyKdt3YcYfk-Yxrr3yWHX5dbDlGoGotS5fGkyPfmPrsIUh9zdRnFT5jnKrMqtcjGkFHFRP0Tf27jOqN6son5pFTl6vHtganpsn4N_Z5_B6Q7YlOe3iHZwPv1zmitpTJXd-dY9-g7Xr26gvr_8AVpthvJxm1-lMcTnvORKV1Ir8QfKEKlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1032785544</pqid></control><display><type>article</type><title>Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Online Library All Journals</source><creator>Cong, Li ; Yang, Y. Jeffrey ; Jieze, Yu ; Tu-qiao, Zhang ; Xinwei, Mao ; Weiyun, Shao</creator><creatorcontrib>Cong, Li ; Yang, Y. Jeffrey ; Jieze, Yu ; Tu-qiao, Zhang ; Xinwei, Mao ; Weiyun, Shao</creatorcontrib><description>It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.2175/106143012X13373550427390</identifier><identifier>PMID: 22953450</identifier><language>eng</language><publisher>Water Environment Federation 601 Wythe Street Alexandria, VA 22314‐1994 U.S.A: Water Environment Federation</publisher><subject>Applied sciences ; Chlorine ; Chlorine - chemistry ; chlorine decay ; Diffusion coefficient ; disinfection by‐products ; Exact sciences and technology ; Flow velocity ; Iron ; Kinetics ; Pilot Projects ; Pollution ; Polyethylene ; Sanitary Engineering - instrumentation ; Stainless Steel ; Stainless steels ; Tap water ; trihalomethanes (THMs) formation ; Trihalomethanes - chemistry ; Turbulence models ; Turbulent flow ; water distribution systems ; Water Pollutants, Chemical - chemistry ; Water Supply ; Water supply systems</subject><ispartof>Water environment research, 2012-08, Vol.84 (8), p.656-661</ispartof><rights>2011 WATER ENVIRONMENT FEDERATION</rights><rights>2012 Water Environment Federation</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Water Environment Federation Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-c1c70b7015db1d164104cbe034610a68d58a2890b5e337e665202ad216231ef63</citedby><cites>FETCH-LOGICAL-c4496-c1c70b7015db1d164104cbe034610a68d58a2890b5e337e665202ad216231ef63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42569465$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42569465$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27922,27923,45572,45573,58015,58248</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26254779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22953450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cong, Li</creatorcontrib><creatorcontrib>Yang, Y. Jeffrey</creatorcontrib><creatorcontrib>Jieze, Yu</creatorcontrib><creatorcontrib>Tu-qiao, Zhang</creatorcontrib><creatorcontrib>Xinwei, Mao</creatorcontrib><creatorcontrib>Weiyun, Shao</creatorcontrib><title>Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems</title><title>Water environment research</title><addtitle>Water Environ Res</addtitle><description>It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).</description><subject>Applied sciences</subject><subject>Chlorine</subject><subject>Chlorine - chemistry</subject><subject>chlorine decay</subject><subject>Diffusion coefficient</subject><subject>disinfection by‐products</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Iron</subject><subject>Kinetics</subject><subject>Pilot Projects</subject><subject>Pollution</subject><subject>Polyethylene</subject><subject>Sanitary Engineering - instrumentation</subject><subject>Stainless Steel</subject><subject>Stainless steels</subject><subject>Tap water</subject><subject>trihalomethanes (THMs) formation</subject><subject>Trihalomethanes - chemistry</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>water distribution systems</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Supply</subject><subject>Water supply systems</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1r3DAQBmBRUpqP9ic0CEKgFzejb_uQQ9kkbSGQ0E1Jb0aWZ1kttpVKNmH_fbXZbQqFQE7S4XlHoxlCKIPPnBl1xkAzKYDxX0wII5QCyY2o4A05YErJwijB9vI9syI7sU8OU1pBDnCQ78g-55USUsEBwTm6MLTFTWwx0tmyC9EPSC_Q2TW1Q0vvol_aLvQ4Lu2AiV6F2NvRh4H6gVp667swFnNnO6T3dsw1Lnwao2-mJzNfpxH79J68Xdgu4YfdeUR-Xl3ezb4V1zdfv8--XBdOykoXjjkDjQGm2oa1TEsG0jUIQmoGVpetKi0vK2gU5m-j1ooDty1nmguGCy2OyKdt3YcYfk-Yxrr3yWHX5dbDlGoGotS5fGkyPfmPrsIUh9zdRnFT5jnKrMqtcjGkFHFRP0Tf27jOqN6son5pFTl6vHtganpsn4N_Z5_B6Q7YlOe3iHZwPv1zmitpTJXd-dY9-g7Xr26gvr_8AVpthvJxm1-lMcTnvORKV1Ir8QfKEKlc</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Cong, Li</creator><creator>Yang, Y. Jeffrey</creator><creator>Jieze, Yu</creator><creator>Tu-qiao, Zhang</creator><creator>Xinwei, Mao</creator><creator>Weiyun, Shao</creator><general>Water Environment Federation</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems</title><author>Cong, Li ; Yang, Y. Jeffrey ; Jieze, Yu ; Tu-qiao, Zhang ; Xinwei, Mao ; Weiyun, Shao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-c1c70b7015db1d164104cbe034610a68d58a2890b5e337e665202ad216231ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chlorine</topic><topic>Chlorine - chemistry</topic><topic>chlorine decay</topic><topic>Diffusion coefficient</topic><topic>disinfection by‐products</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Iron</topic><topic>Kinetics</topic><topic>Pilot Projects</topic><topic>Pollution</topic><topic>Polyethylene</topic><topic>Sanitary Engineering - instrumentation</topic><topic>Stainless Steel</topic><topic>Stainless steels</topic><topic>Tap water</topic><topic>trihalomethanes (THMs) formation</topic><topic>Trihalomethanes - chemistry</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>water distribution systems</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Supply</topic><topic>Water supply systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Li</creatorcontrib><creatorcontrib>Yang, Y. Jeffrey</creatorcontrib><creatorcontrib>Jieze, Yu</creatorcontrib><creatorcontrib>Tu-qiao, Zhang</creatorcontrib><creatorcontrib>Xinwei, Mao</creatorcontrib><creatorcontrib>Weiyun, Shao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Li</au><au>Yang, Y. Jeffrey</au><au>Jieze, Yu</au><au>Tu-qiao, Zhang</au><au>Xinwei, Mao</au><au>Weiyun, Shao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems</atitle><jtitle>Water environment research</jtitle><addtitle>Water Environ Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>84</volume><issue>8</issue><spage>656</spage><epage>661</epage><pages>656-661</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).</abstract><cop>Water Environment Federation 601 Wythe Street Alexandria, VA 22314‐1994 U.S.A</cop><pub>Water Environment Federation</pub><pmid>22953450</pmid><doi>10.2175/106143012X13373550427390</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4303
ispartof Water environment research, 2012-08, Vol.84 (8), p.656-661
issn 1061-4303
1554-7531
language eng
recordid cdi_proquest_miscellaneous_1038601587
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Online Library All Journals
subjects Applied sciences
Chlorine
Chlorine - chemistry
chlorine decay
Diffusion coefficient
disinfection by‐products
Exact sciences and technology
Flow velocity
Iron
Kinetics
Pilot Projects
Pollution
Polyethylene
Sanitary Engineering - instrumentation
Stainless Steel
Stainless steels
Tap water
trihalomethanes (THMs) formation
Trihalomethanes - chemistry
Turbulence models
Turbulent flow
water distribution systems
Water Pollutants, Chemical - chemistry
Water Supply
Water supply systems
title Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Chlorine%20Decay%20and%20Trihalomethanes%20Formation%20in%20a%20Pilot-Scale%20Water%20Distribution%20Systems&rft.jtitle=Water%20environment%20research&rft.au=Cong,%20Li&rft.date=2012-08&rft.volume=84&rft.issue=8&rft.spage=656&rft.epage=661&rft.pages=656-661&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.2175/106143012X13373550427390&rft_dat=%3Cjstor_proqu%3E42569465%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1032785544&rft_id=info:pmid/22953450&rft_jstor_id=42569465&rfr_iscdi=true