Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone
This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose–peptone (GP) and starch–peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2010, Vol.35 (1), p.61-70 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | International journal of hydrogen energy |
container_volume | 35 |
creator | Li, Shiue-Lin Whang, Liang-Ming Chao, Yu-Chieh Wang, Yu-Hsuan Wang, Yung-Fu Hsiao, Chia-Jung Tseng, I.-Cheng Bai, Ming-Der Cheng, Sheng-Shung |
description | This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose–peptone (GP) and starch–peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412
mmol-H
2/L/d at HRT of 2 and 3
h, respectively. At HRT
>
8
h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that
Clostridium sporogenes and
Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor,
Lactobacillus plantarum,
Propionispira arboris, and
Clostridium butyricum were found to be dominant populations, but the presence of
P. arboris at HRT
>
3
h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors. |
doi_str_mv | 10.1016/j.ijhydene.2009.10.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038601572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909016048</els_id><sourcerecordid>1038601572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-965b198c711331629d476731aa26bac4a9e074fa95db79d00913985ddad3af983</originalsourceid><addsrcrecordid>eNqFkUGO1DAQRS0EEs3AFZA3SGzS2HHajneg0QwgjcQG1lbFLne7lcTBdoN6xx04AHfjJDj0AEtWJVW9-qX6n5DnnG054_LVcRuOh7PDGbctY7o2t0yIB2TDe6Ub0fXqIdkwIVkjuNaPyZOcj4xxxTq9IT9uvEdbMo2eVpEEpzFYmrDgXEKcaQkT0lphBkxxqLOVinuc4fd8weRjmmC2WBlHp2BXDEaKNo5xf16FhxATgi0xZerR0a-hHOh-PNmY8ee37wsuJc6X_Vwg2cO_5lPyyMOY8dl9vSKfbm8-Xr9r7j68fX_95q6xHZel0XI3cN1bxbkQXLbadUoqwQFaOYDtQCNTnQe9c4PSrtrEhe53zoET4HUvrsjLi-6S4ucT5mKmkC2OI8wYT9lwJnrJ-E61FZUXtH6ac0JvlhQmSOcKmTURczR_EjFrImu_JlIXX9zfgGxh9Km6FvLf7bYVspNcVe71hcP68JeAyWQbsDrsQqpZGRfD_079AgH9qx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038601572</pqid></control><display><type>article</type><title>Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Shiue-Lin ; Whang, Liang-Ming ; Chao, Yu-Chieh ; Wang, Yu-Hsuan ; Wang, Yung-Fu ; Hsiao, Chia-Jung ; Tseng, I.-Cheng ; Bai, Ming-Der ; Cheng, Sheng-Shung</creator><creatorcontrib>Li, Shiue-Lin ; Whang, Liang-Ming ; Chao, Yu-Chieh ; Wang, Yu-Hsuan ; Wang, Yung-Fu ; Hsiao, Chia-Jung ; Tseng, I.-Cheng ; Bai, Ming-Der ; Cheng, Sheng-Shung</creatorcontrib><description>This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose–peptone (GP) and starch–peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412
mmol-H
2/L/d at HRT of 2 and 3
h, respectively. At HRT
>
8
h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that
Clostridium sporogenes and
Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor,
Lactobacillus plantarum,
Propionispira arboris, and
Clostridium butyricum were found to be dominant populations, but the presence of
P. arboris at HRT
>
3
h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.10.033</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Alternative fuels. Production and utilization ; Anaerobic microorganisms ; Applied sciences ; Biological hydrogen production ; Bioreactors ; Carbohydrates ; Clostridium ; Clostridium butyricum ; Clostridium sporogenes ; Energy ; Exact sciences and technology ; Fermentation ; Fuels ; Gel electrophoresis ; Glucose ; Hydraulic retention time ; Hydraulics ; Hydrogen ; Hydrogen consumption ; Hydrogenation ; Hydrolysis ; Lactobacillus plantarum ; Microbial ecology ; Mixed culture ; Peptone ; Starch ; Substance P</subject><ispartof>International journal of hydrogen energy, 2010, Vol.35 (1), p.61-70</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-965b198c711331629d476731aa26bac4a9e074fa95db79d00913985ddad3af983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2009.10.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22364617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shiue-Lin</creatorcontrib><creatorcontrib>Whang, Liang-Ming</creatorcontrib><creatorcontrib>Chao, Yu-Chieh</creatorcontrib><creatorcontrib>Wang, Yu-Hsuan</creatorcontrib><creatorcontrib>Wang, Yung-Fu</creatorcontrib><creatorcontrib>Hsiao, Chia-Jung</creatorcontrib><creatorcontrib>Tseng, I.-Cheng</creatorcontrib><creatorcontrib>Bai, Ming-Der</creatorcontrib><creatorcontrib>Cheng, Sheng-Shung</creatorcontrib><title>Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone</title><title>International journal of hydrogen energy</title><description>This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose–peptone (GP) and starch–peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412
mmol-H
2/L/d at HRT of 2 and 3
h, respectively. At HRT
>
8
h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that
Clostridium sporogenes and
Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor,
Lactobacillus plantarum,
Propionispira arboris, and
Clostridium butyricum were found to be dominant populations, but the presence of
P. arboris at HRT
>
3
h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors.</description><subject>Acetic acid</subject><subject>Alternative fuels. Production and utilization</subject><subject>Anaerobic microorganisms</subject><subject>Applied sciences</subject><subject>Biological hydrogen production</subject><subject>Bioreactors</subject><subject>Carbohydrates</subject><subject>Clostridium</subject><subject>Clostridium butyricum</subject><subject>Clostridium sporogenes</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fermentation</subject><subject>Fuels</subject><subject>Gel electrophoresis</subject><subject>Glucose</subject><subject>Hydraulic retention time</subject><subject>Hydraulics</subject><subject>Hydrogen</subject><subject>Hydrogen consumption</subject><subject>Hydrogenation</subject><subject>Hydrolysis</subject><subject>Lactobacillus plantarum</subject><subject>Microbial ecology</subject><subject>Mixed culture</subject><subject>Peptone</subject><subject>Starch</subject><subject>Substance P</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUGO1DAQRS0EEs3AFZA3SGzS2HHajneg0QwgjcQG1lbFLne7lcTBdoN6xx04AHfjJDj0AEtWJVW9-qX6n5DnnG054_LVcRuOh7PDGbctY7o2t0yIB2TDe6Ub0fXqIdkwIVkjuNaPyZOcj4xxxTq9IT9uvEdbMo2eVpEEpzFYmrDgXEKcaQkT0lphBkxxqLOVinuc4fd8weRjmmC2WBlHp2BXDEaKNo5xf16FhxATgi0xZerR0a-hHOh-PNmY8ee37wsuJc6X_Vwg2cO_5lPyyMOY8dl9vSKfbm8-Xr9r7j68fX_95q6xHZel0XI3cN1bxbkQXLbadUoqwQFaOYDtQCNTnQe9c4PSrtrEhe53zoET4HUvrsjLi-6S4ucT5mKmkC2OI8wYT9lwJnrJ-E61FZUXtH6ac0JvlhQmSOcKmTURczR_EjFrImu_JlIXX9zfgGxh9Km6FvLf7bYVspNcVe71hcP68JeAyWQbsDrsQqpZGRfD_079AgH9qx8</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Li, Shiue-Lin</creator><creator>Whang, Liang-Ming</creator><creator>Chao, Yu-Chieh</creator><creator>Wang, Yu-Hsuan</creator><creator>Wang, Yung-Fu</creator><creator>Hsiao, Chia-Jung</creator><creator>Tseng, I.-Cheng</creator><creator>Bai, Ming-Der</creator><creator>Cheng, Sheng-Shung</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2010</creationdate><title>Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone</title><author>Li, Shiue-Lin ; Whang, Liang-Ming ; Chao, Yu-Chieh ; Wang, Yu-Hsuan ; Wang, Yung-Fu ; Hsiao, Chia-Jung ; Tseng, I.-Cheng ; Bai, Ming-Der ; Cheng, Sheng-Shung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-965b198c711331629d476731aa26bac4a9e074fa95db79d00913985ddad3af983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetic acid</topic><topic>Alternative fuels. Production and utilization</topic><topic>Anaerobic microorganisms</topic><topic>Applied sciences</topic><topic>Biological hydrogen production</topic><topic>Bioreactors</topic><topic>Carbohydrates</topic><topic>Clostridium</topic><topic>Clostridium butyricum</topic><topic>Clostridium sporogenes</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fermentation</topic><topic>Fuels</topic><topic>Gel electrophoresis</topic><topic>Glucose</topic><topic>Hydraulic retention time</topic><topic>Hydraulics</topic><topic>Hydrogen</topic><topic>Hydrogen consumption</topic><topic>Hydrogenation</topic><topic>Hydrolysis</topic><topic>Lactobacillus plantarum</topic><topic>Microbial ecology</topic><topic>Mixed culture</topic><topic>Peptone</topic><topic>Starch</topic><topic>Substance P</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shiue-Lin</creatorcontrib><creatorcontrib>Whang, Liang-Ming</creatorcontrib><creatorcontrib>Chao, Yu-Chieh</creatorcontrib><creatorcontrib>Wang, Yu-Hsuan</creatorcontrib><creatorcontrib>Wang, Yung-Fu</creatorcontrib><creatorcontrib>Hsiao, Chia-Jung</creatorcontrib><creatorcontrib>Tseng, I.-Cheng</creatorcontrib><creatorcontrib>Bai, Ming-Der</creatorcontrib><creatorcontrib>Cheng, Sheng-Shung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shiue-Lin</au><au>Whang, Liang-Ming</au><au>Chao, Yu-Chieh</au><au>Wang, Yu-Hsuan</au><au>Wang, Yung-Fu</au><au>Hsiao, Chia-Jung</au><au>Tseng, I.-Cheng</au><au>Bai, Ming-Der</au><au>Cheng, Sheng-Shung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010</date><risdate>2010</risdate><volume>35</volume><issue>1</issue><spage>61</spage><epage>70</epage><pages>61-70</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose–peptone (GP) and starch–peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412
mmol-H
2/L/d at HRT of 2 and 3
h, respectively. At HRT
>
8
h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that
Clostridium sporogenes and
Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor,
Lactobacillus plantarum,
Propionispira arboris, and
Clostridium butyricum were found to be dominant populations, but the presence of
P. arboris at HRT
>
3
h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.10.033</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2010, Vol.35 (1), p.61-70 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038601572 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acetic acid Alternative fuels. Production and utilization Anaerobic microorganisms Applied sciences Biological hydrogen production Bioreactors Carbohydrates Clostridium Clostridium butyricum Clostridium sporogenes Energy Exact sciences and technology Fermentation Fuels Gel electrophoresis Glucose Hydraulic retention time Hydraulics Hydrogen Hydrogen consumption Hydrogenation Hydrolysis Lactobacillus plantarum Microbial ecology Mixed culture Peptone Starch Substance P |
title | Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20hydraulic%20retention%20time%20on%20anaerobic%20hydrogenation%20performance%20and%20microbial%20ecology%20of%20bioreactors%20fed%20with%20glucose%E2%80%93peptone%20and%20starch%E2%80%93peptone&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Li,%20Shiue-Lin&rft.date=2010&rft.volume=35&rft.issue=1&rft.spage=61&rft.epage=70&rft.pages=61-70&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.10.033&rft_dat=%3Cproquest_cross%3E1038601572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038601572&rft_id=info:pmid/&rft_els_id=S0360319909016048&rfr_iscdi=true |