A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology

The coherent control of quantum-entangled states of trapped ions 1 has led to significant advances in quantum information 2 , quantum simulation 3 , quantum metrology 4 , 5 and laboratory tests of quantum mechanics 6 and relativity 7 . All of the basic requirements for processing quantum information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2012-09, Vol.7 (9), p.572-576
Hauptverfasser: Wilpers, Guido, See, Patrick, Gill, Patrick, Sinclair, Alastair G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 9
container_start_page 572
container_title Nature nanotechnology
container_volume 7
creator Wilpers, Guido
See, Patrick
Gill, Patrick
Sinclair, Alastair G.
description The coherent control of quantum-entangled states of trapped ions 1 has led to significant advances in quantum information 2 , quantum simulation 3 , quantum metrology 4 , 5 and laboratory tests of quantum mechanics 6 and relativity 7 . All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle 8 . However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach 9 , so there is a clear need for arrays of ion traps that can handle a much larger number of qubits 10 . Traps consisting of a two-dimensional electrode array 11 have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays 8 , 12 , cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual 88 Sr + ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach. A monolithic array of three-dimensional microtraps is etched from a silica-on-silicon wafer and is characterized by confining and probing individual ions and strings of ions.
doi_str_mv 10.1038/nnano.2012.126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038595612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762560931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-64ea4116edbd2ecc07249e3be296c101b0826c63c464d475315e5c20155aff963</originalsourceid><addsrcrecordid>eNptkc1LwzAYh4MoOqdXjxLw4qUz322PQ_wCwYueS5q-3SptMpNU2X9vtqmIeElC8rxPeN8fQmeUzCjhxZW12roZI5TNKFN7aEJzUWScl3L_51zkR-g4hFdCJCuZOERHjBWM5IJN0GKOB2dd38VlZ7D2Xq-xa3FceoCs6QawoXNW9zitOHq9CrjVte-MjtDgj1SGjbPvYOMOCzB06aIZTXQeRzDLJHeL9Qk6aHUf4PRrn6KX25vn6_vs8enu4Xr-mBmueMyUAC0oVdDUDQNjSM5ECbwGVipDCa1JwZRR3AglGpFLTiVIk9qXUrdtqfgUXe68K-_eRgixGrpgoO-1BTeGajM0WUpFWUIv_qCvbvSpiQ0lCKd5QhM121HGuxA8tNXKd4P26wRtbdU2gmoTQZUiSAXnX9qxHqD5wb9nnoCrHRDSk12A__3vv8pPXD6TLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040317385</pqid></control><display><type>article</type><title>A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wilpers, Guido ; See, Patrick ; Gill, Patrick ; Sinclair, Alastair G.</creator><creatorcontrib>Wilpers, Guido ; See, Patrick ; Gill, Patrick ; Sinclair, Alastair G.</creatorcontrib><description>The coherent control of quantum-entangled states of trapped ions 1 has led to significant advances in quantum information 2 , quantum simulation 3 , quantum metrology 4 , 5 and laboratory tests of quantum mechanics 6 and relativity 7 . All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle 8 . However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach 9 , so there is a clear need for arrays of ion traps that can handle a much larger number of qubits 10 . Traps consisting of a two-dimensional electrode array 11 have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays 8 , 12 , cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual 88 Sr + ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach. A monolithic array of three-dimensional microtraps is etched from a silica-on-silicon wafer and is characterized by confining and probing individual ions and strings of ions.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2012.126</identifier><identifier>PMID: 22820742</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/927/481 ; 639/925/929/353 ; Arrays ; Chemistry and Materials Science ; Electrodes ; Fabrication ; Fluorescence ; Ions ; Ions - chemistry ; Laboratory tests ; letter ; Mass Spectrometry ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Quantum Theory ; Semiconductors ; Silica ; Silicon ; Silicon - chemistry ; Silicon wafers</subject><ispartof>Nature nanotechnology, 2012-09, Vol.7 (9), p.572-576</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-64ea4116edbd2ecc07249e3be296c101b0826c63c464d475315e5c20155aff963</citedby><cites>FETCH-LOGICAL-c363t-64ea4116edbd2ecc07249e3be296c101b0826c63c464d475315e5c20155aff963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2012.126$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2012.126$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22820742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilpers, Guido</creatorcontrib><creatorcontrib>See, Patrick</creatorcontrib><creatorcontrib>Gill, Patrick</creatorcontrib><creatorcontrib>Sinclair, Alastair G.</creatorcontrib><title>A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>The coherent control of quantum-entangled states of trapped ions 1 has led to significant advances in quantum information 2 , quantum simulation 3 , quantum metrology 4 , 5 and laboratory tests of quantum mechanics 6 and relativity 7 . All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle 8 . However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach 9 , so there is a clear need for arrays of ion traps that can handle a much larger number of qubits 10 . Traps consisting of a two-dimensional electrode array 11 have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays 8 , 12 , cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual 88 Sr + ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach. A monolithic array of three-dimensional microtraps is etched from a silica-on-silicon wafer and is characterized by confining and probing individual ions and strings of ions.</description><subject>639/925/927/481</subject><subject>639/925/929/353</subject><subject>Arrays</subject><subject>Chemistry and Materials Science</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Fluorescence</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>Laboratory tests</subject><subject>letter</subject><subject>Mass Spectrometry</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Quantum Theory</subject><subject>Semiconductors</subject><subject>Silica</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon wafers</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1LwzAYh4MoOqdXjxLw4qUz322PQ_wCwYueS5q-3SptMpNU2X9vtqmIeElC8rxPeN8fQmeUzCjhxZW12roZI5TNKFN7aEJzUWScl3L_51zkR-g4hFdCJCuZOERHjBWM5IJN0GKOB2dd38VlZ7D2Xq-xa3FceoCs6QawoXNW9zitOHq9CrjVte-MjtDgj1SGjbPvYOMOCzB06aIZTXQeRzDLJHeL9Qk6aHUf4PRrn6KX25vn6_vs8enu4Xr-mBmueMyUAC0oVdDUDQNjSM5ECbwGVipDCa1JwZRR3AglGpFLTiVIk9qXUrdtqfgUXe68K-_eRgixGrpgoO-1BTeGajM0WUpFWUIv_qCvbvSpiQ0lCKd5QhM121HGuxA8tNXKd4P26wRtbdU2gmoTQZUiSAXnX9qxHqD5wb9nnoCrHRDSk12A__3vv8pPXD6TLw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Wilpers, Guido</creator><creator>See, Patrick</creator><creator>Gill, Patrick</creator><creator>Sinclair, Alastair G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology</title><author>Wilpers, Guido ; See, Patrick ; Gill, Patrick ; Sinclair, Alastair G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-64ea4116edbd2ecc07249e3be296c101b0826c63c464d475315e5c20155aff963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/925/927/481</topic><topic>639/925/929/353</topic><topic>Arrays</topic><topic>Chemistry and Materials Science</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Fluorescence</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>Laboratory tests</topic><topic>letter</topic><topic>Mass Spectrometry</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Quantum Theory</topic><topic>Semiconductors</topic><topic>Silica</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilpers, Guido</creatorcontrib><creatorcontrib>See, Patrick</creatorcontrib><creatorcontrib>Gill, Patrick</creatorcontrib><creatorcontrib>Sinclair, Alastair G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilpers, Guido</au><au>See, Patrick</au><au>Gill, Patrick</au><au>Sinclair, Alastair G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>572</spage><epage>576</epage><pages>572-576</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>The coherent control of quantum-entangled states of trapped ions 1 has led to significant advances in quantum information 2 , quantum simulation 3 , quantum metrology 4 , 5 and laboratory tests of quantum mechanics 6 and relativity 7 . All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle 8 . However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach 9 , so there is a clear need for arrays of ion traps that can handle a much larger number of qubits 10 . Traps consisting of a two-dimensional electrode array 11 have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays 8 , 12 , cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual 88 Sr + ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach. A monolithic array of three-dimensional microtraps is etched from a silica-on-silicon wafer and is characterized by confining and probing individual ions and strings of ions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22820742</pmid><doi>10.1038/nnano.2012.126</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2012-09, Vol.7 (9), p.572-576
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_1038595612
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/925/927/481
639/925/929/353
Arrays
Chemistry and Materials Science
Electrodes
Fabrication
Fluorescence
Ions
Ions - chemistry
Laboratory tests
letter
Mass Spectrometry
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Quantum Theory
Semiconductors
Silica
Silicon
Silicon - chemistry
Silicon wafers
title A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20monolithic%20array%20of%20three-dimensional%20ion%20traps%20fabricated%20with%20conventional%20semiconductor%20technology&rft.jtitle=Nature%20nanotechnology&rft.au=Wilpers,%20Guido&rft.date=2012-09-01&rft.volume=7&rft.issue=9&rft.spage=572&rft.epage=576&rft.pages=572-576&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2012.126&rft_dat=%3Cproquest_cross%3E2762560931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1040317385&rft_id=info:pmid/22820742&rfr_iscdi=true