Vortex Analysis in Uncertain Vector Fields

We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2012-06, Vol.31 (3pt2), p.1035-1044
Hauptverfasser: Otto, Mathias, Theisel, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 3pt2
container_start_page 1035
container_title Computer graphics forum
container_volume 31
creator Otto, Mathias
Theisel, Holger
description We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.
doi_str_mv 10.1111/j.1467-8659.2012.03096.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038316721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696242501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKffoeBFhNak-dcePIzhqjDmwW0eQ5q-g9aunUmH27c3tbKDJ99LXsjzC_k9CAUER8TPQxURJmSYCJ5GMSZxhClORXQ4Q6PTxTkaYeJ3iTm_RFfOVRhjJgUfoft1azs4BJNG10dXuqBsglVjwHbab2swXWuDWQl14a7RxUbXDm5-zzFazZ6W0-dw_pq9TCfz0DCZiNCYnOW4gJwVBRYpJ1JKw_zwWGvBOJOwSVMCuS783wpIKNemIECpKIDHlI7R3fDuzrafe3Cd2pbOQF3rBtq9UwTThPo6MfHo7R-0avfWV-mpOPYCWMI8lQyUsa1zFjZqZ8uttkcPqV6iqlTvSvWuVC9R_UhUBx99HKJfZQ3Hf-fUNJv1m8-HQ7503vIpr-2HEpJKrt4XmcJvC99lmamMfgNVu4TP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022146484</pqid></control><display><type>article</type><title>Vortex Analysis in Uncertain Vector Fields</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Otto, Mathias ; Theisel, Holger</creator><creatorcontrib>Otto, Mathias ; Theisel, Holger</creatorcontrib><description>We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2012.03096.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis ; Computation ; Computer graphics ; Computer simulation ; Derivatives ; Fluid flow ; Image processing systems ; Mathematical analysis ; Monte Carlo methods ; Monte Carlo simulation ; Studies ; Vectors (mathematics) ; Vortices</subject><ispartof>Computer graphics forum, 2012-06, Vol.31 (3pt2), p.1035-1044</ispartof><rights>2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</citedby><cites>FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8659.2012.03096.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8659.2012.03096.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Otto, Mathias</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><title>Vortex Analysis in Uncertain Vector Fields</title><title>Computer graphics forum</title><description>We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.</description><subject>Analysis</subject><subject>Computation</subject><subject>Computer graphics</subject><subject>Computer simulation</subject><subject>Derivatives</subject><subject>Fluid flow</subject><subject>Image processing systems</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><subject>Vortices</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LwzAYh4MoOKffoeBFhNak-dcePIzhqjDmwW0eQ5q-g9aunUmH27c3tbKDJ99LXsjzC_k9CAUER8TPQxURJmSYCJ5GMSZxhClORXQ4Q6PTxTkaYeJ3iTm_RFfOVRhjJgUfoft1azs4BJNG10dXuqBsglVjwHbab2swXWuDWQl14a7RxUbXDm5-zzFazZ6W0-dw_pq9TCfz0DCZiNCYnOW4gJwVBRYpJ1JKw_zwWGvBOJOwSVMCuS783wpIKNemIECpKIDHlI7R3fDuzrafe3Cd2pbOQF3rBtq9UwTThPo6MfHo7R-0avfWV-mpOPYCWMI8lQyUsa1zFjZqZ8uttkcPqV6iqlTvSvWuVC9R_UhUBx99HKJfZQ3Hf-fUNJv1m8-HQ7503vIpr-2HEpJKrt4XmcJvC99lmamMfgNVu4TP</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Otto, Mathias</creator><creator>Theisel, Holger</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201206</creationdate><title>Vortex Analysis in Uncertain Vector Fields</title><author>Otto, Mathias ; Theisel, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Computation</topic><topic>Computer graphics</topic><topic>Computer simulation</topic><topic>Derivatives</topic><topic>Fluid flow</topic><topic>Image processing systems</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otto, Mathias</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otto, Mathias</au><au>Theisel, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex Analysis in Uncertain Vector Fields</atitle><jtitle>Computer graphics forum</jtitle><date>2012-06</date><risdate>2012</risdate><volume>31</volume><issue>3pt2</issue><spage>1035</spage><epage>1044</epage><pages>1035-1044</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2012.03096.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2012-06, Vol.31 (3pt2), p.1035-1044
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1038316721
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Analysis
Computation
Computer graphics
Computer simulation
Derivatives
Fluid flow
Image processing systems
Mathematical analysis
Monte Carlo methods
Monte Carlo simulation
Studies
Vectors (mathematics)
Vortices
title Vortex Analysis in Uncertain Vector Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20Analysis%20in%20Uncertain%20Vector%20Fields&rft.jtitle=Computer%20graphics%20forum&rft.au=Otto,%20Mathias&rft.date=2012-06&rft.volume=31&rft.issue=3pt2&rft.spage=1035&rft.epage=1044&rft.pages=1035-1044&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2012.03096.x&rft_dat=%3Cproquest_cross%3E2696242501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022146484&rft_id=info:pmid/&rfr_iscdi=true