Vortex Analysis in Uncertain Vector Fields
We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2012-06, Vol.31 (3pt2), p.1035-1044 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | 3pt2 |
container_start_page | 1035 |
container_title | Computer graphics forum |
container_volume | 31 |
creator | Otto, Mathias Theisel, Holger |
description | We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept. |
doi_str_mv | 10.1111/j.1467-8659.2012.03096.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038316721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696242501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKffoeBFhNak-dcePIzhqjDmwW0eQ5q-g9aunUmH27c3tbKDJ99LXsjzC_k9CAUER8TPQxURJmSYCJ5GMSZxhClORXQ4Q6PTxTkaYeJ3iTm_RFfOVRhjJgUfoft1azs4BJNG10dXuqBsglVjwHbab2swXWuDWQl14a7RxUbXDm5-zzFazZ6W0-dw_pq9TCfz0DCZiNCYnOW4gJwVBRYpJ1JKw_zwWGvBOJOwSVMCuS783wpIKNemIECpKIDHlI7R3fDuzrafe3Cd2pbOQF3rBtq9UwTThPo6MfHo7R-0avfWV-mpOPYCWMI8lQyUsa1zFjZqZ8uttkcPqV6iqlTvSvWuVC9R_UhUBx99HKJfZQ3Hf-fUNJv1m8-HQ7503vIpr-2HEpJKrt4XmcJvC99lmamMfgNVu4TP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022146484</pqid></control><display><type>article</type><title>Vortex Analysis in Uncertain Vector Fields</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Otto, Mathias ; Theisel, Holger</creator><creatorcontrib>Otto, Mathias ; Theisel, Holger</creatorcontrib><description>We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2012.03096.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis ; Computation ; Computer graphics ; Computer simulation ; Derivatives ; Fluid flow ; Image processing systems ; Mathematical analysis ; Monte Carlo methods ; Monte Carlo simulation ; Studies ; Vectors (mathematics) ; Vortices</subject><ispartof>Computer graphics forum, 2012-06, Vol.31 (3pt2), p.1035-1044</ispartof><rights>2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</citedby><cites>FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8659.2012.03096.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8659.2012.03096.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Otto, Mathias</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><title>Vortex Analysis in Uncertain Vector Fields</title><title>Computer graphics forum</title><description>We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.</description><subject>Analysis</subject><subject>Computation</subject><subject>Computer graphics</subject><subject>Computer simulation</subject><subject>Derivatives</subject><subject>Fluid flow</subject><subject>Image processing systems</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><subject>Vortices</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LwzAYh4MoOKffoeBFhNak-dcePIzhqjDmwW0eQ5q-g9aunUmH27c3tbKDJ99LXsjzC_k9CAUER8TPQxURJmSYCJ5GMSZxhClORXQ4Q6PTxTkaYeJ3iTm_RFfOVRhjJgUfoft1azs4BJNG10dXuqBsglVjwHbab2swXWuDWQl14a7RxUbXDm5-zzFazZ6W0-dw_pq9TCfz0DCZiNCYnOW4gJwVBRYpJ1JKw_zwWGvBOJOwSVMCuS783wpIKNemIECpKIDHlI7R3fDuzrafe3Cd2pbOQF3rBtq9UwTThPo6MfHo7R-0avfWV-mpOPYCWMI8lQyUsa1zFjZqZ8uttkcPqV6iqlTvSvWuVC9R_UhUBx99HKJfZQ3Hf-fUNJv1m8-HQ7503vIpr-2HEpJKrt4XmcJvC99lmamMfgNVu4TP</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Otto, Mathias</creator><creator>Theisel, Holger</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201206</creationdate><title>Vortex Analysis in Uncertain Vector Fields</title><author>Otto, Mathias ; Theisel, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4786-ccb4b0deb4dd06951777c444452aa64547ef991ebad865de835acd1e336de5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Computation</topic><topic>Computer graphics</topic><topic>Computer simulation</topic><topic>Derivatives</topic><topic>Fluid flow</topic><topic>Image processing systems</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otto, Mathias</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otto, Mathias</au><au>Theisel, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex Analysis in Uncertain Vector Fields</atitle><jtitle>Computer graphics forum</jtitle><date>2012-06</date><risdate>2012</risdate><volume>31</volume><issue>3pt2</issue><spage>1035</spage><epage>1044</epage><pages>1035-1044</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2‐criterion, Q‐criterion, and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present results of our approach on three real world data sets in order to give a proof of concept.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2012.03096.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2012-06, Vol.31 (3pt2), p.1035-1044 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038316721 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Analysis Computation Computer graphics Computer simulation Derivatives Fluid flow Image processing systems Mathematical analysis Monte Carlo methods Monte Carlo simulation Studies Vectors (mathematics) Vortices |
title | Vortex Analysis in Uncertain Vector Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20Analysis%20in%20Uncertain%20Vector%20Fields&rft.jtitle=Computer%20graphics%20forum&rft.au=Otto,%20Mathias&rft.date=2012-06&rft.volume=31&rft.issue=3pt2&rft.spage=1035&rft.epage=1044&rft.pages=1035-1044&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2012.03096.x&rft_dat=%3Cproquest_cross%3E2696242501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022146484&rft_id=info:pmid/&rfr_iscdi=true |