Stochastic programming for off-line adaptive radiotherapy
In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause sign...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2012-07, Vol.196 (1), p.767-797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 797 |
---|---|
container_issue | 1 |
container_start_page | 767 |
container_title | Annals of operations research |
container_volume | 196 |
creator | Sir, Mustafa Y. Epelman, Marina A. Pollock, Stephen M. |
description | In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement. |
doi_str_mv | 10.1007/s10479-010-0779-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038308839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A330498992</galeid><sourcerecordid>A330498992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-1319aeb44b381af5231fb8b5d6ec8959a47f08882e8ca8afd03074e4f0e9bde13</originalsourceid><addsrcrecordid>eNqNkk9LHTEUxYO00Ff1A3Q34KYLx978c5KliNWC0EV1HTKZm3mRmclrMlP02zePV-izVDGBJITfObncHEI-UTijAM2XTEE0ugYKNTTl8HhAVlQ2rNacq3dkBUyKWnIOH8jHnB8AgFIlV0T_mKNb2zwHV21S7JMdxzD1lY-pit7XQ5iwsp3dzOEXVsl2Ic5rTHbzdETeeztkPP6zH5L7r1d3lzf17ffrb5cXt7WTSs015VRbbIVouaLWS8apb1Uru3N0SkttReNBKcVQOaus74BDI1B4QN12SPkh-bzzLeX9XDDPZgzZ4TDYCeOSDQWueHHguqAn_6APcUlTqa5QjDEhzrX6S_V2QBMmH-dk3dbUXHBZRqNBvE5xEFppzQp19h-qzA7H4OKEPpT7Z7ZvE-y9cLonaJdcPiSXJYd-PefeLjk_938LvudOd7hLMeeE3mxSGG16Kg0z22CZXbBMCZbZBss8Fg3baXJhpx7TfpdfEv0G2ULMsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022244698</pqid></control><display><type>article</type><title>Stochastic programming for off-line adaptive radiotherapy</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Sir, Mustafa Y. ; Epelman, Marina A. ; Pollock, Stephen M.</creator><creatorcontrib>Sir, Mustafa Y. ; Epelman, Marina A. ; Pollock, Stephen M.</creatorcontrib><description>In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-010-0779-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Business and Management ; Cancer therapies ; Combinatorics ; Computation ; Equivalence ; Mathematical programming ; Nuclear radiation ; Operations research ; Operations Research/Decision Theory ; Optimization ; Patients ; Planning ; Programming ; Radiation therapy ; Radiotherapy ; Random variables ; Respiration ; Stochastic programming ; Studies ; Theory of Computation ; Tumors</subject><ispartof>Annals of operations research, 2012-07, Vol.196 (1), p.767-797</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-1319aeb44b381af5231fb8b5d6ec8959a47f08882e8ca8afd03074e4f0e9bde13</citedby><cites>FETCH-LOGICAL-c588t-1319aeb44b381af5231fb8b5d6ec8959a47f08882e8ca8afd03074e4f0e9bde13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-010-0779-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-010-0779-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sir, Mustafa Y.</creatorcontrib><creatorcontrib>Epelman, Marina A.</creatorcontrib><creatorcontrib>Pollock, Stephen M.</creatorcontrib><title>Stochastic programming for off-line adaptive radiotherapy</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement.</description><subject>Approximation</subject><subject>Business and Management</subject><subject>Cancer therapies</subject><subject>Combinatorics</subject><subject>Computation</subject><subject>Equivalence</subject><subject>Mathematical programming</subject><subject>Nuclear radiation</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Patients</subject><subject>Planning</subject><subject>Programming</subject><subject>Radiation therapy</subject><subject>Radiotherapy</subject><subject>Random variables</subject><subject>Respiration</subject><subject>Stochastic programming</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Tumors</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk9LHTEUxYO00Ff1A3Q34KYLx978c5KliNWC0EV1HTKZm3mRmclrMlP02zePV-izVDGBJITfObncHEI-UTijAM2XTEE0ugYKNTTl8HhAVlQ2rNacq3dkBUyKWnIOH8jHnB8AgFIlV0T_mKNb2zwHV21S7JMdxzD1lY-pit7XQ5iwsp3dzOEXVsl2Ic5rTHbzdETeeztkPP6zH5L7r1d3lzf17ffrb5cXt7WTSs015VRbbIVouaLWS8apb1Uru3N0SkttReNBKcVQOaus74BDI1B4QN12SPkh-bzzLeX9XDDPZgzZ4TDYCeOSDQWueHHguqAn_6APcUlTqa5QjDEhzrX6S_V2QBMmH-dk3dbUXHBZRqNBvE5xEFppzQp19h-qzA7H4OKEPpT7Z7ZvE-y9cLonaJdcPiSXJYd-PefeLjk_938LvudOd7hLMeeE3mxSGG16Kg0z22CZXbBMCZbZBss8Fg3baXJhpx7TfpdfEv0G2ULMsA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Sir, Mustafa Y.</creator><creator>Epelman, Marina A.</creator><creator>Pollock, Stephen M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120701</creationdate><title>Stochastic programming for off-line adaptive radiotherapy</title><author>Sir, Mustafa Y. ; Epelman, Marina A. ; Pollock, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-1319aeb44b381af5231fb8b5d6ec8959a47f08882e8ca8afd03074e4f0e9bde13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Business and Management</topic><topic>Cancer therapies</topic><topic>Combinatorics</topic><topic>Computation</topic><topic>Equivalence</topic><topic>Mathematical programming</topic><topic>Nuclear radiation</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Patients</topic><topic>Planning</topic><topic>Programming</topic><topic>Radiation therapy</topic><topic>Radiotherapy</topic><topic>Random variables</topic><topic>Respiration</topic><topic>Stochastic programming</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sir, Mustafa Y.</creatorcontrib><creatorcontrib>Epelman, Marina A.</creatorcontrib><creatorcontrib>Pollock, Stephen M.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sir, Mustafa Y.</au><au>Epelman, Marina A.</au><au>Pollock, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic programming for off-line adaptive radiotherapy</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>196</volume><issue>1</issue><spage>767</spage><epage>797</epage><pages>767-797</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10479-010-0779-x</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2012-07, Vol.196 (1), p.767-797 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038308839 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Approximation Business and Management Cancer therapies Combinatorics Computation Equivalence Mathematical programming Nuclear radiation Operations research Operations Research/Decision Theory Optimization Patients Planning Programming Radiation therapy Radiotherapy Random variables Respiration Stochastic programming Studies Theory of Computation Tumors |
title | Stochastic programming for off-line adaptive radiotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20programming%20for%20off-line%20adaptive%20radiotherapy&rft.jtitle=Annals%20of%20operations%20research&rft.au=Sir,%20Mustafa%20Y.&rft.date=2012-07-01&rft.volume=196&rft.issue=1&rft.spage=767&rft.epage=797&rft.pages=767-797&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-010-0779-x&rft_dat=%3Cgale_proqu%3EA330498992%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022244698&rft_id=info:pmid/&rft_galeid=A330498992&rfr_iscdi=true |