Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing

Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2012-07, Vol.56 (11), p.2690-2699
Hauptverfasser: Tang, Meiqin, Long, Chengnian, Guan, Xinping, Wei, Xinjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2699
container_issue 11
container_start_page 2690
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 56
creator Tang, Meiqin
Long, Chengnian
Guan, Xinping
Wei, Xinjiang
description Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.
doi_str_mv 10.1016/j.comnet.2012.04.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038303135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128612001521</els_id><sourcerecordid>1038303135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEEqXwD1hY6oZNUr-u42yQUEVLpapsYG0N9qTybWIH27l9_Pq6hFUXXR2P9J15-DTNZ0Y7Rpk63Xc2zgFLxynjHZVdlTfNEdM9b3uqhrf1LfTQMq7V--ZDzntKqZRcHzWP1zHYGA54T9xDgNlbkhe0Ja0zgWmKFoqPgYwxERtvgi_-gCSB85HUgXcx3WZy8EAWSMXbCUm-gzSTuBQ_-8fNDMGR7Od1goKuVgFh8uHmY_NuhCnjp_963Pw-__7r7Ed79fPi8uzbVWuF6kurd46iE3wQ8g8TgwTH9eikqvsrDZKj6xWMjPdaunoWKj4oZ_sdGwGlFTtx3HzZ-i4p_l0xFzP7bHGaIGBcs2FUaEEF-4eevED3cU2hblcpLjVVkvNKyY2yKeaccDRL8jOkhwqZ50DM3myBmOdADJWmSrV93WxYjz14TCZbj8Gi86n-uHHRv97gCeDimBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024806422</pqid></control><display><type>article</type><title>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tang, Meiqin ; Long, Chengnian ; Guan, Xinping ; Wei, Xinjiang</creator><creatorcontrib>Tang, Meiqin ; Long, Chengnian ; Guan, Xinping ; Wei, Xinjiang</creatorcontrib><description>Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2012.04.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Allocations ; Broadband ; Cognitive radio ; Dynamic spectrum allocation ; Dynamics ; Mathematical functions ; Mathematical models ; Networks ; Nonconvex optimization ; Optimization ; Optimization algorithms ; PSO ; Radio networks ; Simulated annealing ; Spectrum allocation ; Studies</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2012-07, Vol.56 (11), p.2690-2699</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</citedby><cites>FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2012.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Long, Chengnian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Wei, Xinjiang</creatorcontrib><title>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Broadband</subject><subject>Cognitive radio</subject><subject>Dynamic spectrum allocation</subject><subject>Dynamics</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Nonconvex optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>PSO</subject><subject>Radio networks</subject><subject>Simulated annealing</subject><subject>Spectrum allocation</subject><subject>Studies</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSMEEqXwD1hY6oZNUr-u42yQUEVLpapsYG0N9qTybWIH27l9_Pq6hFUXXR2P9J15-DTNZ0Y7Rpk63Xc2zgFLxynjHZVdlTfNEdM9b3uqhrf1LfTQMq7V--ZDzntKqZRcHzWP1zHYGA54T9xDgNlbkhe0Ja0zgWmKFoqPgYwxERtvgi_-gCSB85HUgXcx3WZy8EAWSMXbCUm-gzSTuBQ_-8fNDMGR7Od1goKuVgFh8uHmY_NuhCnjp_963Pw-__7r7Ed79fPi8uzbVWuF6kurd46iE3wQ8g8TgwTH9eikqvsrDZKj6xWMjPdaunoWKj4oZ_sdGwGlFTtx3HzZ-i4p_l0xFzP7bHGaIGBcs2FUaEEF-4eevED3cU2hblcpLjVVkvNKyY2yKeaccDRL8jOkhwqZ50DM3myBmOdADJWmSrV93WxYjz14TCZbj8Gi86n-uHHRv97gCeDimBg</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Tang, Meiqin</creator><creator>Long, Chengnian</creator><creator>Guan, Xinping</creator><creator>Wei, Xinjiang</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120731</creationdate><title>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</title><author>Tang, Meiqin ; Long, Chengnian ; Guan, Xinping ; Wei, Xinjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Broadband</topic><topic>Cognitive radio</topic><topic>Dynamic spectrum allocation</topic><topic>Dynamics</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Nonconvex optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>PSO</topic><topic>Radio networks</topic><topic>Simulated annealing</topic><topic>Spectrum allocation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Long, Chengnian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Wei, Xinjiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Meiqin</au><au>Long, Chengnian</au><au>Guan, Xinping</au><au>Wei, Xinjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2012-07-31</date><risdate>2012</risdate><volume>56</volume><issue>11</issue><spage>2690</spage><epage>2699</epage><pages>2690-2699</pages><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2012.04.012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2012-07, Vol.56 (11), p.2690-2699
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_miscellaneous_1038303135
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Allocations
Broadband
Cognitive radio
Dynamic spectrum allocation
Dynamics
Mathematical functions
Mathematical models
Networks
Nonconvex optimization
Optimization
Optimization algorithms
PSO
Radio networks
Simulated annealing
Spectrum allocation
Studies
title Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconvex%20dynamic%20spectrum%20allocation%20for%20cognitive%20radio%20networks%20via%20particle%20swarm%20optimization%20and%20simulated%20annealing&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Tang,%20Meiqin&rft.date=2012-07-31&rft.volume=56&rft.issue=11&rft.spage=2690&rft.epage=2699&rft.pages=2690-2699&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2012.04.012&rft_dat=%3Cproquest_cross%3E1038303135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024806422&rft_id=info:pmid/&rft_els_id=S1389128612001521&rfr_iscdi=true