Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing
Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2012-07, Vol.56 (11), p.2690-2699 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2699 |
---|---|
container_issue | 11 |
container_start_page | 2690 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 56 |
creator | Tang, Meiqin Long, Chengnian Guan, Xinping Wei, Xinjiang |
description | Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem. |
doi_str_mv | 10.1016/j.comnet.2012.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038303135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128612001521</els_id><sourcerecordid>1038303135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEEqXwD1hY6oZNUr-u42yQUEVLpapsYG0N9qTybWIH27l9_Pq6hFUXXR2P9J15-DTNZ0Y7Rpk63Xc2zgFLxynjHZVdlTfNEdM9b3uqhrf1LfTQMq7V--ZDzntKqZRcHzWP1zHYGA54T9xDgNlbkhe0Ja0zgWmKFoqPgYwxERtvgi_-gCSB85HUgXcx3WZy8EAWSMXbCUm-gzSTuBQ_-8fNDMGR7Od1goKuVgFh8uHmY_NuhCnjp_963Pw-__7r7Ed79fPi8uzbVWuF6kurd46iE3wQ8g8TgwTH9eikqvsrDZKj6xWMjPdaunoWKj4oZ_sdGwGlFTtx3HzZ-i4p_l0xFzP7bHGaIGBcs2FUaEEF-4eevED3cU2hblcpLjVVkvNKyY2yKeaccDRL8jOkhwqZ50DM3myBmOdADJWmSrV93WxYjz14TCZbj8Gi86n-uHHRv97gCeDimBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024806422</pqid></control><display><type>article</type><title>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tang, Meiqin ; Long, Chengnian ; Guan, Xinping ; Wei, Xinjiang</creator><creatorcontrib>Tang, Meiqin ; Long, Chengnian ; Guan, Xinping ; Wei, Xinjiang</creatorcontrib><description>Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2012.04.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Allocations ; Broadband ; Cognitive radio ; Dynamic spectrum allocation ; Dynamics ; Mathematical functions ; Mathematical models ; Networks ; Nonconvex optimization ; Optimization ; Optimization algorithms ; PSO ; Radio networks ; Simulated annealing ; Spectrum allocation ; Studies</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2012-07, Vol.56 (11), p.2690-2699</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</citedby><cites>FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2012.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Long, Chengnian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Wei, Xinjiang</creatorcontrib><title>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Broadband</subject><subject>Cognitive radio</subject><subject>Dynamic spectrum allocation</subject><subject>Dynamics</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Nonconvex optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>PSO</subject><subject>Radio networks</subject><subject>Simulated annealing</subject><subject>Spectrum allocation</subject><subject>Studies</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSMEEqXwD1hY6oZNUr-u42yQUEVLpapsYG0N9qTybWIH27l9_Pq6hFUXXR2P9J15-DTNZ0Y7Rpk63Xc2zgFLxynjHZVdlTfNEdM9b3uqhrf1LfTQMq7V--ZDzntKqZRcHzWP1zHYGA54T9xDgNlbkhe0Ja0zgWmKFoqPgYwxERtvgi_-gCSB85HUgXcx3WZy8EAWSMXbCUm-gzSTuBQ_-8fNDMGR7Od1goKuVgFh8uHmY_NuhCnjp_963Pw-__7r7Ed79fPi8uzbVWuF6kurd46iE3wQ8g8TgwTH9eikqvsrDZKj6xWMjPdaunoWKj4oZ_sdGwGlFTtx3HzZ-i4p_l0xFzP7bHGaIGBcs2FUaEEF-4eevED3cU2hblcpLjVVkvNKyY2yKeaccDRL8jOkhwqZ50DM3myBmOdADJWmSrV93WxYjz14TCZbj8Gi86n-uHHRv97gCeDimBg</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Tang, Meiqin</creator><creator>Long, Chengnian</creator><creator>Guan, Xinping</creator><creator>Wei, Xinjiang</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120731</creationdate><title>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</title><author>Tang, Meiqin ; Long, Chengnian ; Guan, Xinping ; Wei, Xinjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-85d0ed32934b1394ad28fd4644268a42ed76af12784d000e6296dc751fae4c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Broadband</topic><topic>Cognitive radio</topic><topic>Dynamic spectrum allocation</topic><topic>Dynamics</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Nonconvex optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>PSO</topic><topic>Radio networks</topic><topic>Simulated annealing</topic><topic>Spectrum allocation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Long, Chengnian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Wei, Xinjiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Meiqin</au><au>Long, Chengnian</au><au>Guan, Xinping</au><au>Wei, Xinjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2012-07-31</date><risdate>2012</risdate><volume>56</volume><issue>11</issue><spage>2690</spage><epage>2699</epage><pages>2690-2699</pages><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2012.04.012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2012-07, Vol.56 (11), p.2690-2699 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038303135 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Allocations Broadband Cognitive radio Dynamic spectrum allocation Dynamics Mathematical functions Mathematical models Networks Nonconvex optimization Optimization Optimization algorithms PSO Radio networks Simulated annealing Spectrum allocation Studies |
title | Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconvex%20dynamic%20spectrum%20allocation%20for%20cognitive%20radio%20networks%20via%20particle%20swarm%20optimization%20and%20simulated%20annealing&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Tang,%20Meiqin&rft.date=2012-07-31&rft.volume=56&rft.issue=11&rft.spage=2690&rft.epage=2699&rft.pages=2690-2699&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2012.04.012&rft_dat=%3Cproquest_cross%3E1038303135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024806422&rft_id=info:pmid/&rft_els_id=S1389128612001521&rfr_iscdi=true |