Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization
The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalys...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2012-06, Vol.72, p.207-214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | |
container_start_page | 207 |
container_title | Electrochimica acta |
container_volume | 72 |
creator | Meredith, Matthew T. Giroud, Fabien Minteer, Shelley D. |
description | The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2. |
doi_str_mv | 10.1016/j.electacta.2012.04.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038259807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861200549X</els_id><sourcerecordid>1038259807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG8gFiUvSdZzEybHiLSG4wNly7DW4Suxip0jtr8eliCvSrvbyzYx2CLmgUFCgzXxZ4IBqkmmKEmhZQFUA5QdkRlvOctbW3SGZAVCWV03bHJOTGJcAwBsOM9Ivttbh_GOjg3_HYe6k89O6x0z5ceWjnTAfvbbGos5-coLXGDPjQ_a8uHnIlJzksIk2ZtIlwm03I2Z2HH1vB7uVk_XujBwZOUQ8_72n5O3u9vX6IX96uX-8XjzlivF2yjnrsO8rZZhs0pasVrptFFKNEiSYroZaG2S6aUvsVQedMbSWSmvKSq0VOyVXe99V8J9rjJMYbVQ4DNKhX0dBgbVl3bXAE8r3qAo-xoBGrIIdZdgkSOxaFUvx16rYtSqgEqnVpLz8DZFRycEE6ZSNf_LkX1WU08Qt9hymj78sBhGVRadQ25B8hfb236xvtQ2VBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038259807</pqid></control><display><type>article</type><title>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</title><source>Elsevier ScienceDirect Journals</source><creator>Meredith, Matthew T. ; Giroud, Fabien ; Minteer, Shelley D.</creator><creatorcontrib>Meredith, Matthew T. ; Giroud, Fabien ; Minteer, Shelley D.</creatorcontrib><description>The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2012.04.017</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Azines, NADH oxidation ; Biofuel cells ; Biological and medical sciences ; Biosensors ; Biotechnology ; Carbon nanotubes ; Chemistry ; Electrochemistry ; Electrodes ; Electrodes: preparations and properties ; Energy ; Energy. Thermal use of fuels ; Enzymes ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Fuels ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Glucose ; Hydrogels ; Methods. Procedures. Technologies ; NADH ; Nanostructure ; Other electrodes ; Polymer composite modified electrodes ; Various methods and equipments</subject><ispartof>Electrochimica acta, 2012-06, Vol.72, p.207-214</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</citedby><cites>FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001346861200549X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25944171$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meredith, Matthew T.</creatorcontrib><creatorcontrib>Giroud, Fabien</creatorcontrib><creatorcontrib>Minteer, Shelley D.</creatorcontrib><title>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</title><title>Electrochimica acta</title><description>The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.</description><subject>Applied sciences</subject><subject>Azines, NADH oxidation</subject><subject>Biofuel cells</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Carbon nanotubes</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrodes: preparations and properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Enzymes</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Glucose</subject><subject>Hydrogels</subject><subject>Methods. Procedures. Technologies</subject><subject>NADH</subject><subject>Nanostructure</subject><subject>Other electrodes</subject><subject>Polymer composite modified electrodes</subject><subject>Various methods and equipments</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG8gFiUvSdZzEybHiLSG4wNly7DW4Suxip0jtr8eliCvSrvbyzYx2CLmgUFCgzXxZ4IBqkmmKEmhZQFUA5QdkRlvOctbW3SGZAVCWV03bHJOTGJcAwBsOM9Ivttbh_GOjg3_HYe6k89O6x0z5ceWjnTAfvbbGos5-coLXGDPjQ_a8uHnIlJzksIk2ZtIlwm03I2Z2HH1vB7uVk_XujBwZOUQ8_72n5O3u9vX6IX96uX-8XjzlivF2yjnrsO8rZZhs0pasVrptFFKNEiSYroZaG2S6aUvsVQedMbSWSmvKSq0VOyVXe99V8J9rjJMYbVQ4DNKhX0dBgbVl3bXAE8r3qAo-xoBGrIIdZdgkSOxaFUvx16rYtSqgEqnVpLz8DZFRycEE6ZSNf_LkX1WU08Qt9hymj78sBhGVRadQ25B8hfb236xvtQ2VBA</recordid><startdate>20120630</startdate><enddate>20120630</enddate><creator>Meredith, Matthew T.</creator><creator>Giroud, Fabien</creator><creator>Minteer, Shelley D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120630</creationdate><title>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</title><author>Meredith, Matthew T. ; Giroud, Fabien ; Minteer, Shelley D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Azines, NADH oxidation</topic><topic>Biofuel cells</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Carbon nanotubes</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrodes: preparations and properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Enzymes</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Glucose</topic><topic>Hydrogels</topic><topic>Methods. Procedures. Technologies</topic><topic>NADH</topic><topic>Nanostructure</topic><topic>Other electrodes</topic><topic>Polymer composite modified electrodes</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meredith, Matthew T.</creatorcontrib><creatorcontrib>Giroud, Fabien</creatorcontrib><creatorcontrib>Minteer, Shelley D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meredith, Matthew T.</au><au>Giroud, Fabien</au><au>Minteer, Shelley D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</atitle><jtitle>Electrochimica acta</jtitle><date>2012-06-30</date><risdate>2012</risdate><volume>72</volume><spage>207</spage><epage>214</epage><pages>207-214</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2012.04.017</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2012-06, Vol.72, p.207-214 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038259807 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Azines, NADH oxidation Biofuel cells Biological and medical sciences Biosensors Biotechnology Carbon nanotubes Chemistry Electrochemistry Electrodes Electrodes: preparations and properties Energy Energy. Thermal use of fuels Enzymes Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Fuels Fundamental and applied biological sciences. Psychology General and physical chemistry Glucose Hydrogels Methods. Procedures. Technologies NADH Nanostructure Other electrodes Polymer composite modified electrodes Various methods and equipments |
title | Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azine/hydrogel/nanotube%20composite-modified%20electrodes%20for%20NADH%20catalysis%20and%20enzyme%20immobilization&rft.jtitle=Electrochimica%20acta&rft.au=Meredith,%20Matthew%20T.&rft.date=2012-06-30&rft.volume=72&rft.spage=207&rft.epage=214&rft.pages=207-214&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2012.04.017&rft_dat=%3Cproquest_cross%3E1038259807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038259807&rft_id=info:pmid/&rft_els_id=S001346861200549X&rfr_iscdi=true |