Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization

The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2012-06, Vol.72, p.207-214
Hauptverfasser: Meredith, Matthew T., Giroud, Fabien, Minteer, Shelley D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue
container_start_page 207
container_title Electrochimica acta
container_volume 72
creator Meredith, Matthew T.
Giroud, Fabien
Minteer, Shelley D.
description The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.
doi_str_mv 10.1016/j.electacta.2012.04.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038259807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861200549X</els_id><sourcerecordid>1038259807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG8gFiUvSdZzEybHiLSG4wNly7DW4Suxip0jtr8eliCvSrvbyzYx2CLmgUFCgzXxZ4IBqkmmKEmhZQFUA5QdkRlvOctbW3SGZAVCWV03bHJOTGJcAwBsOM9Ivttbh_GOjg3_HYe6k89O6x0z5ceWjnTAfvbbGos5-coLXGDPjQ_a8uHnIlJzksIk2ZtIlwm03I2Z2HH1vB7uVk_XujBwZOUQ8_72n5O3u9vX6IX96uX-8XjzlivF2yjnrsO8rZZhs0pasVrptFFKNEiSYroZaG2S6aUvsVQedMbSWSmvKSq0VOyVXe99V8J9rjJMYbVQ4DNKhX0dBgbVl3bXAE8r3qAo-xoBGrIIdZdgkSOxaFUvx16rYtSqgEqnVpLz8DZFRycEE6ZSNf_LkX1WU08Qt9hymj78sBhGVRadQ25B8hfb236xvtQ2VBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038259807</pqid></control><display><type>article</type><title>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</title><source>Elsevier ScienceDirect Journals</source><creator>Meredith, Matthew T. ; Giroud, Fabien ; Minteer, Shelley D.</creator><creatorcontrib>Meredith, Matthew T. ; Giroud, Fabien ; Minteer, Shelley D.</creatorcontrib><description>The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2012.04.017</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Azines, NADH oxidation ; Biofuel cells ; Biological and medical sciences ; Biosensors ; Biotechnology ; Carbon nanotubes ; Chemistry ; Electrochemistry ; Electrodes ; Electrodes: preparations and properties ; Energy ; Energy. Thermal use of fuels ; Enzymes ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Fuels ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Glucose ; Hydrogels ; Methods. Procedures. Technologies ; NADH ; Nanostructure ; Other electrodes ; Polymer composite modified electrodes ; Various methods and equipments</subject><ispartof>Electrochimica acta, 2012-06, Vol.72, p.207-214</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</citedby><cites>FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001346861200549X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25944171$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meredith, Matthew T.</creatorcontrib><creatorcontrib>Giroud, Fabien</creatorcontrib><creatorcontrib>Minteer, Shelley D.</creatorcontrib><title>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</title><title>Electrochimica acta</title><description>The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.</description><subject>Applied sciences</subject><subject>Azines, NADH oxidation</subject><subject>Biofuel cells</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Carbon nanotubes</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrodes: preparations and properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Enzymes</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Glucose</subject><subject>Hydrogels</subject><subject>Methods. Procedures. Technologies</subject><subject>NADH</subject><subject>Nanostructure</subject><subject>Other electrodes</subject><subject>Polymer composite modified electrodes</subject><subject>Various methods and equipments</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG8gFiUvSdZzEybHiLSG4wNly7DW4Suxip0jtr8eliCvSrvbyzYx2CLmgUFCgzXxZ4IBqkmmKEmhZQFUA5QdkRlvOctbW3SGZAVCWV03bHJOTGJcAwBsOM9Ivttbh_GOjg3_HYe6k89O6x0z5ceWjnTAfvbbGos5-coLXGDPjQ_a8uHnIlJzksIk2ZtIlwm03I2Z2HH1vB7uVk_XujBwZOUQ8_72n5O3u9vX6IX96uX-8XjzlivF2yjnrsO8rZZhs0pasVrptFFKNEiSYroZaG2S6aUvsVQedMbSWSmvKSq0VOyVXe99V8J9rjJMYbVQ4DNKhX0dBgbVl3bXAE8r3qAo-xoBGrIIdZdgkSOxaFUvx16rYtSqgEqnVpLz8DZFRycEE6ZSNf_LkX1WU08Qt9hymj78sBhGVRadQ25B8hfb236xvtQ2VBA</recordid><startdate>20120630</startdate><enddate>20120630</enddate><creator>Meredith, Matthew T.</creator><creator>Giroud, Fabien</creator><creator>Minteer, Shelley D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120630</creationdate><title>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</title><author>Meredith, Matthew T. ; Giroud, Fabien ; Minteer, Shelley D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-739ebb4cf3a6f3a235cd86ce1dea0a0f9505dfe3d682ebc909ff15acdd132ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Azines, NADH oxidation</topic><topic>Biofuel cells</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Carbon nanotubes</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrodes: preparations and properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Enzymes</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Glucose</topic><topic>Hydrogels</topic><topic>Methods. Procedures. Technologies</topic><topic>NADH</topic><topic>Nanostructure</topic><topic>Other electrodes</topic><topic>Polymer composite modified electrodes</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meredith, Matthew T.</creatorcontrib><creatorcontrib>Giroud, Fabien</creatorcontrib><creatorcontrib>Minteer, Shelley D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meredith, Matthew T.</au><au>Giroud, Fabien</au><au>Minteer, Shelley D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization</atitle><jtitle>Electrochimica acta</jtitle><date>2012-06-30</date><risdate>2012</risdate><volume>72</volume><spage>207</spage><epage>214</epage><pages>207-214</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100μW/cm2.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2012.04.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2012-06, Vol.72, p.207-214
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1038259807
source Elsevier ScienceDirect Journals
subjects Applied sciences
Azines, NADH oxidation
Biofuel cells
Biological and medical sciences
Biosensors
Biotechnology
Carbon nanotubes
Chemistry
Electrochemistry
Electrodes
Electrodes: preparations and properties
Energy
Energy. Thermal use of fuels
Enzymes
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Fuels
Fundamental and applied biological sciences. Psychology
General and physical chemistry
Glucose
Hydrogels
Methods. Procedures. Technologies
NADH
Nanostructure
Other electrodes
Polymer composite modified electrodes
Various methods and equipments
title Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azine/hydrogel/nanotube%20composite-modified%20electrodes%20for%20NADH%20catalysis%20and%20enzyme%20immobilization&rft.jtitle=Electrochimica%20acta&rft.au=Meredith,%20Matthew%20T.&rft.date=2012-06-30&rft.volume=72&rft.spage=207&rft.epage=214&rft.pages=207-214&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2012.04.017&rft_dat=%3Cproquest_cross%3E1038259807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038259807&rft_id=info:pmid/&rft_els_id=S001346861200549X&rfr_iscdi=true