Mushroom structure of GaN template for epitaxial growth of GaN
In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the me...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2012-07, Vol.351 (1), p.101-106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Journal of crystal growth |
container_volume | 351 |
creator | Lee, Sung Bo Kwon, Tae-Wan Park, Jungwon Jin Choi, Won Sung Park, Hae |
description | In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations.
► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer. |
doi_str_mv | 10.1016/j.jcrysgro.2012.04.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038258642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812003028</els_id><sourcerecordid>1038258642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1AuSFwS1q_EXBCo4iUVuMDZctwNuErrYjtA_z1GLVy57O7hmx3NEHJMoaJA67N5NbdhHV-DrxhQVoGogNc7ZERVw0sJwHbJKE9WAhNqnxzEOAfISgojcvEwxLfg_aKIKQw2DQEL3xW35rFIuFj1JmHR-VDgyiXz5UxfZJ_P9LaFDsleZ_qIR9s9Ji8318-Tu3L6dHs_uZqWljcylQ1XQnS0FuocWtEJybiQsqWC17LlljYqn2hAKKyNFM35TDGkLQcmDVUt5WNyuvm7Cv59wJj0wkWLfW-W6IeoKXDFpKoFy2i9QW3wMQbs9Cq4hQnrDOmfwvRc_xamfwrTIHQuLAtPth4mWtN3wSyti39qVkPOQlXmLjcc5sAfDoOO1uHS4swFtEnPvPvP6hu2MIJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038258642</pqid></control><display><type>article</type><title>Mushroom structure of GaN template for epitaxial growth of GaN</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Sung Bo ; Kwon, Tae-Wan ; Park, Jungwon ; Jin Choi, Won ; Sung Park, Hae</creator><creatorcontrib>Lee, Sung Bo ; Kwon, Tae-Wan ; Park, Jungwon ; Jin Choi, Won ; Sung Park, Hae</creatorcontrib><description>In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations.
► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.04.036</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Mass transfer ; A2. Single crystal growth ; A3. Metalorganic vapor phase epitaxy ; B1. Gallium compounds ; B2. Semiconducting III–V materials ; B3. Light emitting diodes ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; General studies of phase transitions ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Nucleation ; Physics ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2012-07, Vol.351 (1), p.101-106</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</citedby><cites>FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.04.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26037518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sung Bo</creatorcontrib><creatorcontrib>Kwon, Tae-Wan</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><creatorcontrib>Jin Choi, Won</creatorcontrib><creatorcontrib>Sung Park, Hae</creatorcontrib><title>Mushroom structure of GaN template for epitaxial growth of GaN</title><title>Journal of crystal growth</title><description>In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations.
► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.</description><subject>A1. Mass transfer</subject><subject>A2. Single crystal growth</subject><subject>A3. Metalorganic vapor phase epitaxy</subject><subject>B1. Gallium compounds</subject><subject>B2. Semiconducting III–V materials</subject><subject>B3. Light emitting diodes</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>General studies of phase transitions</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1AuSFwS1q_EXBCo4iUVuMDZctwNuErrYjtA_z1GLVy57O7hmx3NEHJMoaJA67N5NbdhHV-DrxhQVoGogNc7ZERVw0sJwHbJKE9WAhNqnxzEOAfISgojcvEwxLfg_aKIKQw2DQEL3xW35rFIuFj1JmHR-VDgyiXz5UxfZJ_P9LaFDsleZ_qIR9s9Ji8318-Tu3L6dHs_uZqWljcylQ1XQnS0FuocWtEJybiQsqWC17LlljYqn2hAKKyNFM35TDGkLQcmDVUt5WNyuvm7Cv59wJj0wkWLfW-W6IeoKXDFpKoFy2i9QW3wMQbs9Cq4hQnrDOmfwvRc_xamfwrTIHQuLAtPth4mWtN3wSyti39qVkPOQlXmLjcc5sAfDoOO1uHS4swFtEnPvPvP6hu2MIJf</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>Lee, Sung Bo</creator><creator>Kwon, Tae-Wan</creator><creator>Park, Jungwon</creator><creator>Jin Choi, Won</creator><creator>Sung Park, Hae</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20120715</creationdate><title>Mushroom structure of GaN template for epitaxial growth of GaN</title><author>Lee, Sung Bo ; Kwon, Tae-Wan ; Park, Jungwon ; Jin Choi, Won ; Sung Park, Hae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A1. Mass transfer</topic><topic>A2. Single crystal growth</topic><topic>A3. Metalorganic vapor phase epitaxy</topic><topic>B1. Gallium compounds</topic><topic>B2. Semiconducting III–V materials</topic><topic>B3. Light emitting diodes</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>General studies of phase transitions</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sung Bo</creatorcontrib><creatorcontrib>Kwon, Tae-Wan</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><creatorcontrib>Jin Choi, Won</creatorcontrib><creatorcontrib>Sung Park, Hae</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sung Bo</au><au>Kwon, Tae-Wan</au><au>Park, Jungwon</au><au>Jin Choi, Won</au><au>Sung Park, Hae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mushroom structure of GaN template for epitaxial growth of GaN</atitle><jtitle>Journal of crystal growth</jtitle><date>2012-07-15</date><risdate>2012</risdate><volume>351</volume><issue>1</issue><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations.
► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.04.036</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2012-07, Vol.351 (1), p.101-106 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038258642 |
source | Elsevier ScienceDirect Journals Complete |
subjects | A1. Mass transfer A2. Single crystal growth A3. Metalorganic vapor phase epitaxy B1. Gallium compounds B2. Semiconducting III–V materials B3. Light emitting diodes Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Defects and impurities in crystals microstructure Equations of state, phase equilibria, and phase transitions Exact sciences and technology General studies of phase transitions Linear defects: dislocations, disclinations Materials science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Nucleation Physics Structure of solids and liquids crystallography Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Vapor phase epitaxy growth from vapor phase |
title | Mushroom structure of GaN template for epitaxial growth of GaN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mushroom%20structure%20of%20GaN%20template%20for%20epitaxial%20growth%20of%20GaN&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lee,%20Sung%20Bo&rft.date=2012-07-15&rft.volume=351&rft.issue=1&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.04.036&rft_dat=%3Cproquest_cross%3E1038258642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038258642&rft_id=info:pmid/&rft_els_id=S0022024812003028&rfr_iscdi=true |