Mushroom structure of GaN template for epitaxial growth of GaN

In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2012-07, Vol.351 (1), p.101-106
Hauptverfasser: Lee, Sung Bo, Kwon, Tae-Wan, Park, Jungwon, Jin Choi, Won, Sung Park, Hae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 101
container_title Journal of crystal growth
container_volume 351
creator Lee, Sung Bo
Kwon, Tae-Wan
Park, Jungwon
Jin Choi, Won
Sung Park, Hae
description In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations. ► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.
doi_str_mv 10.1016/j.jcrysgro.2012.04.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038258642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812003028</els_id><sourcerecordid>1038258642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1AuSFwS1q_EXBCo4iUVuMDZctwNuErrYjtA_z1GLVy57O7hmx3NEHJMoaJA67N5NbdhHV-DrxhQVoGogNc7ZERVw0sJwHbJKE9WAhNqnxzEOAfISgojcvEwxLfg_aKIKQw2DQEL3xW35rFIuFj1JmHR-VDgyiXz5UxfZJ_P9LaFDsleZ_qIR9s9Ji8318-Tu3L6dHs_uZqWljcylQ1XQnS0FuocWtEJybiQsqWC17LlljYqn2hAKKyNFM35TDGkLQcmDVUt5WNyuvm7Cv59wJj0wkWLfW-W6IeoKXDFpKoFy2i9QW3wMQbs9Cq4hQnrDOmfwvRc_xamfwrTIHQuLAtPth4mWtN3wSyti39qVkPOQlXmLjcc5sAfDoOO1uHS4swFtEnPvPvP6hu2MIJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038258642</pqid></control><display><type>article</type><title>Mushroom structure of GaN template for epitaxial growth of GaN</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Sung Bo ; Kwon, Tae-Wan ; Park, Jungwon ; Jin Choi, Won ; Sung Park, Hae</creator><creatorcontrib>Lee, Sung Bo ; Kwon, Tae-Wan ; Park, Jungwon ; Jin Choi, Won ; Sung Park, Hae</creatorcontrib><description>In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations. ► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.04.036</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Mass transfer ; A2. Single crystal growth ; A3. Metalorganic vapor phase epitaxy ; B1. Gallium compounds ; B2. Semiconducting III–V materials ; B3. Light emitting diodes ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; General studies of phase transitions ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Nucleation ; Physics ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2012-07, Vol.351 (1), p.101-106</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</citedby><cites>FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.04.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26037518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sung Bo</creatorcontrib><creatorcontrib>Kwon, Tae-Wan</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><creatorcontrib>Jin Choi, Won</creatorcontrib><creatorcontrib>Sung Park, Hae</creatorcontrib><title>Mushroom structure of GaN template for epitaxial growth of GaN</title><title>Journal of crystal growth</title><description>In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations. ► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.</description><subject>A1. Mass transfer</subject><subject>A2. Single crystal growth</subject><subject>A3. Metalorganic vapor phase epitaxy</subject><subject>B1. Gallium compounds</subject><subject>B2. Semiconducting III–V materials</subject><subject>B3. Light emitting diodes</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>General studies of phase transitions</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1AuSFwS1q_EXBCo4iUVuMDZctwNuErrYjtA_z1GLVy57O7hmx3NEHJMoaJA67N5NbdhHV-DrxhQVoGogNc7ZERVw0sJwHbJKE9WAhNqnxzEOAfISgojcvEwxLfg_aKIKQw2DQEL3xW35rFIuFj1JmHR-VDgyiXz5UxfZJ_P9LaFDsleZ_qIR9s9Ji8318-Tu3L6dHs_uZqWljcylQ1XQnS0FuocWtEJybiQsqWC17LlljYqn2hAKKyNFM35TDGkLQcmDVUt5WNyuvm7Cv59wJj0wkWLfW-W6IeoKXDFpKoFy2i9QW3wMQbs9Cq4hQnrDOmfwvRc_xamfwrTIHQuLAtPth4mWtN3wSyti39qVkPOQlXmLjcc5sAfDoOO1uHS4swFtEnPvPvP6hu2MIJf</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>Lee, Sung Bo</creator><creator>Kwon, Tae-Wan</creator><creator>Park, Jungwon</creator><creator>Jin Choi, Won</creator><creator>Sung Park, Hae</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20120715</creationdate><title>Mushroom structure of GaN template for epitaxial growth of GaN</title><author>Lee, Sung Bo ; Kwon, Tae-Wan ; Park, Jungwon ; Jin Choi, Won ; Sung Park, Hae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-73844f164890b4f4523455b14365b3c178143ea048e6a5479d82e1b3025a18b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A1. Mass transfer</topic><topic>A2. Single crystal growth</topic><topic>A3. Metalorganic vapor phase epitaxy</topic><topic>B1. Gallium compounds</topic><topic>B2. Semiconducting III–V materials</topic><topic>B3. Light emitting diodes</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>General studies of phase transitions</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sung Bo</creatorcontrib><creatorcontrib>Kwon, Tae-Wan</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><creatorcontrib>Jin Choi, Won</creatorcontrib><creatorcontrib>Sung Park, Hae</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sung Bo</au><au>Kwon, Tae-Wan</au><au>Park, Jungwon</au><au>Jin Choi, Won</au><au>Sung Park, Hae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mushroom structure of GaN template for epitaxial growth of GaN</atitle><jtitle>Journal of crystal growth</jtitle><date>2012-07-15</date><risdate>2012</risdate><volume>351</volume><issue>1</issue><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations. ► Novel mushroom structure is formed by a simple anneal of a GaN buffer layer. ► Cap of the mushroom structure is identified as wurtzitic GaN. ► Stem region is observed to remain zinc-blende. ► Structure energy difference between the two phases drives the mushroom formation. ► This study provides a wider perspective on the use of the GaN buffer layer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.04.036</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2012-07, Vol.351 (1), p.101-106
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1038258642
source Elsevier ScienceDirect Journals Complete
subjects A1. Mass transfer
A2. Single crystal growth
A3. Metalorganic vapor phase epitaxy
B1. Gallium compounds
B2. Semiconducting III–V materials
B3. Light emitting diodes
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Defects and impurities in crystals
microstructure
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
General studies of phase transitions
Linear defects: dislocations, disclinations
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Nucleation
Physics
Structure of solids and liquids
crystallography
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Vapor phase epitaxy
growth from vapor phase
title Mushroom structure of GaN template for epitaxial growth of GaN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mushroom%20structure%20of%20GaN%20template%20for%20epitaxial%20growth%20of%20GaN&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lee,%20Sung%20Bo&rft.date=2012-07-15&rft.volume=351&rft.issue=1&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.04.036&rft_dat=%3Cproquest_cross%3E1038258642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038258642&rft_id=info:pmid/&rft_els_id=S0022024812003028&rfr_iscdi=true