NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy
N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high reso...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2012-05, Vol.346 (1), p.50-55 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | Journal of crystal growth |
container_volume | 346 |
creator | Lang, J.R. Speck, J.S. |
description | N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation.
► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures. |
doi_str_mv | 10.1016/j.jcrysgro.2012.02.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038256903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812001789</els_id><sourcerecordid>1038256903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXIRvGzNR5Pu3hTRKoheFLyF2dlZm7LdrclW7b83S9WrMEwSeJ4Z8jJ2KsVECmkvlpMlhm18C91ECakmIpW2e2wk85nOjBBqn41SV5lQ0_yQHcW4FCKZUozY6-OdzoLHBU_-Z7_gXc3v2zk8cmir3e1ieMXNmkIDfe-RIi-3fPBKiFTxVdcQbhoIvCRYcVr7Hr62x-yghibSyc85Zi-3N8_Xd9nD0_z--uohQz2TfQYFIlFeaWNNKSvSRaHKymhRYFFBYZS1ppA1gqVaa6wlag0m9amZ5SVM9Zid7-auQ_e-odi7lY9ITQMtdZvopNC5MrYQOqF2h2LoYgxUu3XwKwjbBLkhSrd0v1G6IUonUmmbxLOfHRARmjpAiz7-2crk0tjpwF3uOEof_vAUXERPLVLlA2Hvqs7_t-obOe2MZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038256903</pqid></control><display><type>article</type><title>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lang, J.R. ; Speck, J.S.</creator><creatorcontrib>Lang, J.R. ; Speck, J.S.</creatorcontrib><description>N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation.
► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.02.036</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal morphology ; A3. Molecular beam epitaxy ; A3. Superlattices ; Alloys ; B1. Nitrides ; B2. Semiconducting indium compounds ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Gallium base alloys ; Gallium nitrides ; Indium gallium nitrides ; Instability ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular beam epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Overpressure ; Physics ; Superlattices ; Theory and models of film growth</subject><ispartof>Journal of crystal growth, 2012-05, Vol.346 (1), p.50-55</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</citedby><cites>FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.02.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25815646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, J.R.</creatorcontrib><creatorcontrib>Speck, J.S.</creatorcontrib><title>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</title><title>Journal of crystal growth</title><description>N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation.
► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.</description><subject>A1. Crystal morphology</subject><subject>A3. Molecular beam epitaxy</subject><subject>A3. Superlattices</subject><subject>Alloys</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting indium compounds</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Gallium base alloys</subject><subject>Gallium nitrides</subject><subject>Indium gallium nitrides</subject><subject>Instability</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular beam epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Overpressure</subject><subject>Physics</subject><subject>Superlattices</subject><subject>Theory and models of film growth</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXIRvGzNR5Pu3hTRKoheFLyF2dlZm7LdrclW7b83S9WrMEwSeJ4Z8jJ2KsVECmkvlpMlhm18C91ECakmIpW2e2wk85nOjBBqn41SV5lQ0_yQHcW4FCKZUozY6-OdzoLHBU_-Z7_gXc3v2zk8cmir3e1ieMXNmkIDfe-RIi-3fPBKiFTxVdcQbhoIvCRYcVr7Hr62x-yghibSyc85Zi-3N8_Xd9nD0_z--uohQz2TfQYFIlFeaWNNKSvSRaHKymhRYFFBYZS1ppA1gqVaa6wlag0m9amZ5SVM9Zid7-auQ_e-odi7lY9ITQMtdZvopNC5MrYQOqF2h2LoYgxUu3XwKwjbBLkhSrd0v1G6IUonUmmbxLOfHRARmjpAiz7-2crk0tjpwF3uOEof_vAUXERPLVLlA2Hvqs7_t-obOe2MZw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Lang, J.R.</creator><creator>Speck, J.S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</title><author>Lang, J.R. ; Speck, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A1. Crystal morphology</topic><topic>A3. Molecular beam epitaxy</topic><topic>A3. Superlattices</topic><topic>Alloys</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting indium compounds</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Gallium base alloys</topic><topic>Gallium nitrides</topic><topic>Indium gallium nitrides</topic><topic>Instability</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular beam epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Overpressure</topic><topic>Physics</topic><topic>Superlattices</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, J.R.</creatorcontrib><creatorcontrib>Speck, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, J.R.</au><au>Speck, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</atitle><jtitle>Journal of crystal growth</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>346</volume><issue>1</issue><spage>50</spage><epage>55</epage><pages>50-55</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation.
► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.02.036</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2012-05, Vol.346 (1), p.50-55 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038256903 |
source | Access via ScienceDirect (Elsevier) |
subjects | A1. Crystal morphology A3. Molecular beam epitaxy A3. Superlattices Alloys B1. Nitrides B2. Semiconducting indium compounds Cross-disciplinary physics: materials science rheology Exact sciences and technology Gallium base alloys Gallium nitrides Indium gallium nitrides Instability Materials science Methods of deposition of films and coatings film growth and epitaxy Molecular beam epitaxy Molecular, atomic, ion, and chemical beam epitaxy Overpressure Physics Superlattices Theory and models of film growth |
title | NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NH3-rich%20growth%20of%20InGaN%20and%20InGaN/GaN%20superlattices%20by%20NH3-based%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lang,%20J.R.&rft.date=2012-05-01&rft.volume=346&rft.issue=1&rft.spage=50&rft.epage=55&rft.pages=50-55&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.02.036&rft_dat=%3Cproquest_cross%3E1038256903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038256903&rft_id=info:pmid/&rft_els_id=S0022024812001789&rfr_iscdi=true |