NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy

N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2012-05, Vol.346 (1), p.50-55
Hauptverfasser: Lang, J.R., Speck, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 50
container_title Journal of crystal growth
container_volume 346
creator Lang, J.R.
Speck, J.S.
description N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation. ► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.
doi_str_mv 10.1016/j.jcrysgro.2012.02.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038256903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812001789</els_id><sourcerecordid>1038256903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXIRvGzNR5Pu3hTRKoheFLyF2dlZm7LdrclW7b83S9WrMEwSeJ4Z8jJ2KsVECmkvlpMlhm18C91ECakmIpW2e2wk85nOjBBqn41SV5lQ0_yQHcW4FCKZUozY6-OdzoLHBU_-Z7_gXc3v2zk8cmir3e1ieMXNmkIDfe-RIi-3fPBKiFTxVdcQbhoIvCRYcVr7Hr62x-yghibSyc85Zi-3N8_Xd9nD0_z--uohQz2TfQYFIlFeaWNNKSvSRaHKymhRYFFBYZS1ppA1gqVaa6wlag0m9amZ5SVM9Zid7-auQ_e-odi7lY9ITQMtdZvopNC5MrYQOqF2h2LoYgxUu3XwKwjbBLkhSrd0v1G6IUonUmmbxLOfHRARmjpAiz7-2crk0tjpwF3uOEof_vAUXERPLVLlA2Hvqs7_t-obOe2MZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038256903</pqid></control><display><type>article</type><title>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lang, J.R. ; Speck, J.S.</creator><creatorcontrib>Lang, J.R. ; Speck, J.S.</creatorcontrib><description>N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation. ► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.02.036</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal morphology ; A3. Molecular beam epitaxy ; A3. Superlattices ; Alloys ; B1. Nitrides ; B2. Semiconducting indium compounds ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Gallium base alloys ; Gallium nitrides ; Indium gallium nitrides ; Instability ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular beam epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Overpressure ; Physics ; Superlattices ; Theory and models of film growth</subject><ispartof>Journal of crystal growth, 2012-05, Vol.346 (1), p.50-55</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</citedby><cites>FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.02.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25815646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, J.R.</creatorcontrib><creatorcontrib>Speck, J.S.</creatorcontrib><title>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</title><title>Journal of crystal growth</title><description>N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation. ► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.</description><subject>A1. Crystal morphology</subject><subject>A3. Molecular beam epitaxy</subject><subject>A3. Superlattices</subject><subject>Alloys</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting indium compounds</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Gallium base alloys</subject><subject>Gallium nitrides</subject><subject>Indium gallium nitrides</subject><subject>Instability</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular beam epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Overpressure</subject><subject>Physics</subject><subject>Superlattices</subject><subject>Theory and models of film growth</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXIRvGzNR5Pu3hTRKoheFLyF2dlZm7LdrclW7b83S9WrMEwSeJ4Z8jJ2KsVECmkvlpMlhm18C91ECakmIpW2e2wk85nOjBBqn41SV5lQ0_yQHcW4FCKZUozY6-OdzoLHBU_-Z7_gXc3v2zk8cmir3e1ieMXNmkIDfe-RIi-3fPBKiFTxVdcQbhoIvCRYcVr7Hr62x-yghibSyc85Zi-3N8_Xd9nD0_z--uohQz2TfQYFIlFeaWNNKSvSRaHKymhRYFFBYZS1ppA1gqVaa6wlag0m9amZ5SVM9Zid7-auQ_e-odi7lY9ITQMtdZvopNC5MrYQOqF2h2LoYgxUu3XwKwjbBLkhSrd0v1G6IUonUmmbxLOfHRARmjpAiz7-2crk0tjpwF3uOEof_vAUXERPLVLlA2Hvqs7_t-obOe2MZw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Lang, J.R.</creator><creator>Speck, J.S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</title><author>Lang, J.R. ; Speck, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a9ccee8d3565b1de3992bd5309c9da95266591fca6ef33cf1c33a51c34578ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A1. Crystal morphology</topic><topic>A3. Molecular beam epitaxy</topic><topic>A3. Superlattices</topic><topic>Alloys</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting indium compounds</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Gallium base alloys</topic><topic>Gallium nitrides</topic><topic>Indium gallium nitrides</topic><topic>Instability</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular beam epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Overpressure</topic><topic>Physics</topic><topic>Superlattices</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, J.R.</creatorcontrib><creatorcontrib>Speck, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, J.R.</au><au>Speck, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy</atitle><jtitle>Journal of crystal growth</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>346</volume><issue>1</issue><spage>50</spage><epage>55</epage><pages>50-55</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>N-rich growth by NH3-based molecular beam epitaxy was investigated for intermediate-temperature GaN and InGaN on c-plane GaN templates. The dependences of growth mode and surface morphology on group-V overpressure, In/Ga ratio, and temperature were explored with atomic force microscopy and high resolution x-ray diffraction. Extension to an “ultra-NH3-rich” regime of very high NH3-flows showed a decreased growth rate and increased In-content for InGaN alloys for constant group III source fluxes. Rapid modulation of NH3 overpressure, growth rate, and substrate temperature has enabled the growth of high quality, many-period InGaN/GaN superlattices, while suppressing morphological instabilities and subsequent stress relaxation. ► Increased In-content is demonstrated for InGaN films grown with higher V/III ratio. ► Gas-phase scattering is shown to limit film growth rates at high NH3 flux. ► RHEED oscillations indicate InGaN films are grown in a layer-by-layer mode. ► Temperature-modulated growth enables thick InGaN/GaN MQW or SL structures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.02.036</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2012-05, Vol.346 (1), p.50-55
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1038256903
source Access via ScienceDirect (Elsevier)
subjects A1. Crystal morphology
A3. Molecular beam epitaxy
A3. Superlattices
Alloys
B1. Nitrides
B2. Semiconducting indium compounds
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Gallium base alloys
Gallium nitrides
Indium gallium nitrides
Instability
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Molecular beam epitaxy
Molecular, atomic, ion, and chemical beam epitaxy
Overpressure
Physics
Superlattices
Theory and models of film growth
title NH3-rich growth of InGaN and InGaN/GaN superlattices by NH3-based molecular beam epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NH3-rich%20growth%20of%20InGaN%20and%20InGaN/GaN%20superlattices%20by%20NH3-based%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lang,%20J.R.&rft.date=2012-05-01&rft.volume=346&rft.issue=1&rft.spage=50&rft.epage=55&rft.pages=50-55&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.02.036&rft_dat=%3Cproquest_cross%3E1038256903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038256903&rft_id=info:pmid/&rft_els_id=S0022024812001789&rfr_iscdi=true