Enhanced localized near field and scattered far field for surface nanophotonics applications

The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in quantum electronics 2012-01, Vol.36 (1), p.194-271
Hauptverfasser: Terakawa, Mitsuhiro, Takeda, Seiji, Tanaka, Yuto, Obara, Go, Miyanishi, Tomoya, Sakai, Tetsuo, Sumiyoshi, Tetsumi, Sekita, Hitoshi, Hasegawa, Makoto, Viktorovitch, Pierre, Obara, Minoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 1
container_start_page 194
container_title Progress in quantum electronics
container_volume 36
creator Terakawa, Mitsuhiro
Takeda, Seiji
Tanaka, Yuto
Obara, Go
Miyanishi, Tomoya
Sakai, Tetsuo
Sumiyoshi, Tetsumi
Sekita, Hitoshi
Hasegawa, Makoto
Viktorovitch, Pierre
Obara, Minoru
description The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.
doi_str_mv 10.1016/j.pquantelec.2012.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038256352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079672712000079</els_id><sourcerecordid>1038256352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKvfYY9edp0kzSZ71FL_gOBFb0JIs7M0ZZtsk11BP70pFT16mmHm_YY3j5CCQkWB1jfbathPxo_Yo60YUFYBrwDqEzKjSvKS1kyekhmAbMpaMnlOLlLaQkYXVMzI-8pvjLfYFn2wpndfufNoYtE57NvC-LZI1owjxrzofuddiEWaYmcsFt74MGzCGLyzqTDD0LtMuODTJTnrTJ_w6qfOydv96nX5WD6_PDwtb59Lu6ByLC1VHe2Mgjr7ZmsByJo1Y1yIxnIpWgbtWkkQorZSteuWUTCLhjYNF4aB4nxOro93hxj2E6ZR71yy2PfGY5iSpsAVEzUXLEvVUWpjSClip4fodiZ-ZpE-BKq3-i9QfQhUA9fZWEbvjijmVz4cRp2sw0N2LqIddRvc_0e-Afs8hDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038256352</pqid></control><display><type>article</type><title>Enhanced localized near field and scattered far field for surface nanophotonics applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Terakawa, Mitsuhiro ; Takeda, Seiji ; Tanaka, Yuto ; Obara, Go ; Miyanishi, Tomoya ; Sakai, Tetsuo ; Sumiyoshi, Tetsumi ; Sekita, Hitoshi ; Hasegawa, Makoto ; Viktorovitch, Pierre ; Obara, Minoru</creator><creatorcontrib>Terakawa, Mitsuhiro ; Takeda, Seiji ; Tanaka, Yuto ; Obara, Go ; Miyanishi, Tomoya ; Sakai, Tetsuo ; Sumiyoshi, Tetsumi ; Sekita, Hitoshi ; Hasegawa, Makoto ; Viktorovitch, Pierre ; Obara, Minoru</creatorcontrib><description>The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.</description><identifier>ISSN: 0079-6727</identifier><identifier>EISSN: 1873-1627</identifier><identifier>DOI: 10.1016/j.pquantelec.2012.03.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anderson localization ; Nanocomposites ; Nanomaterials ; Nanoprocessing ; Nanostructure ; Near field ; Near fields ; Photonics ; Plasmonics ; Quantum electronics ; Random lasing ; Random photonic crystal ; Scattering ; Surface ripple structures</subject><ispartof>Progress in quantum electronics, 2012-01, Vol.36 (1), p.194-271</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</citedby><cites>FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pquantelec.2012.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Terakawa, Mitsuhiro</creatorcontrib><creatorcontrib>Takeda, Seiji</creatorcontrib><creatorcontrib>Tanaka, Yuto</creatorcontrib><creatorcontrib>Obara, Go</creatorcontrib><creatorcontrib>Miyanishi, Tomoya</creatorcontrib><creatorcontrib>Sakai, Tetsuo</creatorcontrib><creatorcontrib>Sumiyoshi, Tetsumi</creatorcontrib><creatorcontrib>Sekita, Hitoshi</creatorcontrib><creatorcontrib>Hasegawa, Makoto</creatorcontrib><creatorcontrib>Viktorovitch, Pierre</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><title>Enhanced localized near field and scattered far field for surface nanophotonics applications</title><title>Progress in quantum electronics</title><description>The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.</description><subject>Anderson localization</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoprocessing</subject><subject>Nanostructure</subject><subject>Near field</subject><subject>Near fields</subject><subject>Photonics</subject><subject>Plasmonics</subject><subject>Quantum electronics</subject><subject>Random lasing</subject><subject>Random photonic crystal</subject><subject>Scattering</subject><subject>Surface ripple structures</subject><issn>0079-6727</issn><issn>1873-1627</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKvfYY9edp0kzSZ71FL_gOBFb0JIs7M0ZZtsk11BP70pFT16mmHm_YY3j5CCQkWB1jfbathPxo_Yo60YUFYBrwDqEzKjSvKS1kyekhmAbMpaMnlOLlLaQkYXVMzI-8pvjLfYFn2wpndfufNoYtE57NvC-LZI1owjxrzofuddiEWaYmcsFt74MGzCGLyzqTDD0LtMuODTJTnrTJ_w6qfOydv96nX5WD6_PDwtb59Lu6ByLC1VHe2Mgjr7ZmsByJo1Y1yIxnIpWgbtWkkQorZSteuWUTCLhjYNF4aB4nxOro93hxj2E6ZR71yy2PfGY5iSpsAVEzUXLEvVUWpjSClip4fodiZ-ZpE-BKq3-i9QfQhUA9fZWEbvjijmVz4cRp2sw0N2LqIddRvc_0e-Afs8hDY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Terakawa, Mitsuhiro</creator><creator>Takeda, Seiji</creator><creator>Tanaka, Yuto</creator><creator>Obara, Go</creator><creator>Miyanishi, Tomoya</creator><creator>Sakai, Tetsuo</creator><creator>Sumiyoshi, Tetsumi</creator><creator>Sekita, Hitoshi</creator><creator>Hasegawa, Makoto</creator><creator>Viktorovitch, Pierre</creator><creator>Obara, Minoru</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201201</creationdate><title>Enhanced localized near field and scattered far field for surface nanophotonics applications</title><author>Terakawa, Mitsuhiro ; Takeda, Seiji ; Tanaka, Yuto ; Obara, Go ; Miyanishi, Tomoya ; Sakai, Tetsuo ; Sumiyoshi, Tetsumi ; Sekita, Hitoshi ; Hasegawa, Makoto ; Viktorovitch, Pierre ; Obara, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anderson localization</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoprocessing</topic><topic>Nanostructure</topic><topic>Near field</topic><topic>Near fields</topic><topic>Photonics</topic><topic>Plasmonics</topic><topic>Quantum electronics</topic><topic>Random lasing</topic><topic>Random photonic crystal</topic><topic>Scattering</topic><topic>Surface ripple structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terakawa, Mitsuhiro</creatorcontrib><creatorcontrib>Takeda, Seiji</creatorcontrib><creatorcontrib>Tanaka, Yuto</creatorcontrib><creatorcontrib>Obara, Go</creatorcontrib><creatorcontrib>Miyanishi, Tomoya</creatorcontrib><creatorcontrib>Sakai, Tetsuo</creatorcontrib><creatorcontrib>Sumiyoshi, Tetsumi</creatorcontrib><creatorcontrib>Sekita, Hitoshi</creatorcontrib><creatorcontrib>Hasegawa, Makoto</creatorcontrib><creatorcontrib>Viktorovitch, Pierre</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terakawa, Mitsuhiro</au><au>Takeda, Seiji</au><au>Tanaka, Yuto</au><au>Obara, Go</au><au>Miyanishi, Tomoya</au><au>Sakai, Tetsuo</au><au>Sumiyoshi, Tetsumi</au><au>Sekita, Hitoshi</au><au>Hasegawa, Makoto</au><au>Viktorovitch, Pierre</au><au>Obara, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced localized near field and scattered far field for surface nanophotonics applications</atitle><jtitle>Progress in quantum electronics</jtitle><date>2012-01</date><risdate>2012</risdate><volume>36</volume><issue>1</issue><spage>194</spage><epage>271</epage><pages>194-271</pages><issn>0079-6727</issn><eissn>1873-1627</eissn><abstract>The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pquantelec.2012.03.006</doi><tpages>78</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6727
ispartof Progress in quantum electronics, 2012-01, Vol.36 (1), p.194-271
issn 0079-6727
1873-1627
language eng
recordid cdi_proquest_miscellaneous_1038256352
source Elsevier ScienceDirect Journals Complete
subjects Anderson localization
Nanocomposites
Nanomaterials
Nanoprocessing
Nanostructure
Near field
Near fields
Photonics
Plasmonics
Quantum electronics
Random lasing
Random photonic crystal
Scattering
Surface ripple structures
title Enhanced localized near field and scattered far field for surface nanophotonics applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20localized%20near%20field%20and%20scattered%20far%20field%20for%20surface%20nanophotonics%20applications&rft.jtitle=Progress%20in%20quantum%20electronics&rft.au=Terakawa,%20Mitsuhiro&rft.date=2012-01&rft.volume=36&rft.issue=1&rft.spage=194&rft.epage=271&rft.pages=194-271&rft.issn=0079-6727&rft.eissn=1873-1627&rft_id=info:doi/10.1016/j.pquantelec.2012.03.006&rft_dat=%3Cproquest_cross%3E1038256352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038256352&rft_id=info:pmid/&rft_els_id=S0079672712000079&rfr_iscdi=true