Enhanced localized near field and scattered far field for surface nanophotonics applications
The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and phot...
Gespeichert in:
Veröffentlicht in: | Progress in quantum electronics 2012-01, Vol.36 (1), p.194-271 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 1 |
container_start_page | 194 |
container_title | Progress in quantum electronics |
container_volume | 36 |
creator | Terakawa, Mitsuhiro Takeda, Seiji Tanaka, Yuto Obara, Go Miyanishi, Tomoya Sakai, Tetsuo Sumiyoshi, Tetsumi Sekita, Hitoshi Hasegawa, Makoto Viktorovitch, Pierre Obara, Minoru |
description | The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing. |
doi_str_mv | 10.1016/j.pquantelec.2012.03.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038256352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079672712000079</els_id><sourcerecordid>1038256352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKvfYY9edp0kzSZ71FL_gOBFb0JIs7M0ZZtsk11BP70pFT16mmHm_YY3j5CCQkWB1jfbathPxo_Yo60YUFYBrwDqEzKjSvKS1kyekhmAbMpaMnlOLlLaQkYXVMzI-8pvjLfYFn2wpndfufNoYtE57NvC-LZI1owjxrzofuddiEWaYmcsFt74MGzCGLyzqTDD0LtMuODTJTnrTJ_w6qfOydv96nX5WD6_PDwtb59Lu6ByLC1VHe2Mgjr7ZmsByJo1Y1yIxnIpWgbtWkkQorZSteuWUTCLhjYNF4aB4nxOro93hxj2E6ZR71yy2PfGY5iSpsAVEzUXLEvVUWpjSClip4fodiZ-ZpE-BKq3-i9QfQhUA9fZWEbvjijmVz4cRp2sw0N2LqIddRvc_0e-Afs8hDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038256352</pqid></control><display><type>article</type><title>Enhanced localized near field and scattered far field for surface nanophotonics applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Terakawa, Mitsuhiro ; Takeda, Seiji ; Tanaka, Yuto ; Obara, Go ; Miyanishi, Tomoya ; Sakai, Tetsuo ; Sumiyoshi, Tetsumi ; Sekita, Hitoshi ; Hasegawa, Makoto ; Viktorovitch, Pierre ; Obara, Minoru</creator><creatorcontrib>Terakawa, Mitsuhiro ; Takeda, Seiji ; Tanaka, Yuto ; Obara, Go ; Miyanishi, Tomoya ; Sakai, Tetsuo ; Sumiyoshi, Tetsumi ; Sekita, Hitoshi ; Hasegawa, Makoto ; Viktorovitch, Pierre ; Obara, Minoru</creatorcontrib><description>The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.</description><identifier>ISSN: 0079-6727</identifier><identifier>EISSN: 1873-1627</identifier><identifier>DOI: 10.1016/j.pquantelec.2012.03.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anderson localization ; Nanocomposites ; Nanomaterials ; Nanoprocessing ; Nanostructure ; Near field ; Near fields ; Photonics ; Plasmonics ; Quantum electronics ; Random lasing ; Random photonic crystal ; Scattering ; Surface ripple structures</subject><ispartof>Progress in quantum electronics, 2012-01, Vol.36 (1), p.194-271</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</citedby><cites>FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pquantelec.2012.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Terakawa, Mitsuhiro</creatorcontrib><creatorcontrib>Takeda, Seiji</creatorcontrib><creatorcontrib>Tanaka, Yuto</creatorcontrib><creatorcontrib>Obara, Go</creatorcontrib><creatorcontrib>Miyanishi, Tomoya</creatorcontrib><creatorcontrib>Sakai, Tetsuo</creatorcontrib><creatorcontrib>Sumiyoshi, Tetsumi</creatorcontrib><creatorcontrib>Sekita, Hitoshi</creatorcontrib><creatorcontrib>Hasegawa, Makoto</creatorcontrib><creatorcontrib>Viktorovitch, Pierre</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><title>Enhanced localized near field and scattered far field for surface nanophotonics applications</title><title>Progress in quantum electronics</title><description>The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.</description><subject>Anderson localization</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoprocessing</subject><subject>Nanostructure</subject><subject>Near field</subject><subject>Near fields</subject><subject>Photonics</subject><subject>Plasmonics</subject><subject>Quantum electronics</subject><subject>Random lasing</subject><subject>Random photonic crystal</subject><subject>Scattering</subject><subject>Surface ripple structures</subject><issn>0079-6727</issn><issn>1873-1627</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKvfYY9edp0kzSZ71FL_gOBFb0JIs7M0ZZtsk11BP70pFT16mmHm_YY3j5CCQkWB1jfbathPxo_Yo60YUFYBrwDqEzKjSvKS1kyekhmAbMpaMnlOLlLaQkYXVMzI-8pvjLfYFn2wpndfufNoYtE57NvC-LZI1owjxrzofuddiEWaYmcsFt74MGzCGLyzqTDD0LtMuODTJTnrTJ_w6qfOydv96nX5WD6_PDwtb59Lu6ByLC1VHe2Mgjr7ZmsByJo1Y1yIxnIpWgbtWkkQorZSteuWUTCLhjYNF4aB4nxOro93hxj2E6ZR71yy2PfGY5iSpsAVEzUXLEvVUWpjSClip4fodiZ-ZpE-BKq3-i9QfQhUA9fZWEbvjijmVz4cRp2sw0N2LqIddRvc_0e-Afs8hDY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Terakawa, Mitsuhiro</creator><creator>Takeda, Seiji</creator><creator>Tanaka, Yuto</creator><creator>Obara, Go</creator><creator>Miyanishi, Tomoya</creator><creator>Sakai, Tetsuo</creator><creator>Sumiyoshi, Tetsumi</creator><creator>Sekita, Hitoshi</creator><creator>Hasegawa, Makoto</creator><creator>Viktorovitch, Pierre</creator><creator>Obara, Minoru</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201201</creationdate><title>Enhanced localized near field and scattered far field for surface nanophotonics applications</title><author>Terakawa, Mitsuhiro ; Takeda, Seiji ; Tanaka, Yuto ; Obara, Go ; Miyanishi, Tomoya ; Sakai, Tetsuo ; Sumiyoshi, Tetsumi ; Sekita, Hitoshi ; Hasegawa, Makoto ; Viktorovitch, Pierre ; Obara, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-c18f1fa8060062b50e29b223559c375d20db870556c78dbd210a4919935a20833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anderson localization</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoprocessing</topic><topic>Nanostructure</topic><topic>Near field</topic><topic>Near fields</topic><topic>Photonics</topic><topic>Plasmonics</topic><topic>Quantum electronics</topic><topic>Random lasing</topic><topic>Random photonic crystal</topic><topic>Scattering</topic><topic>Surface ripple structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terakawa, Mitsuhiro</creatorcontrib><creatorcontrib>Takeda, Seiji</creatorcontrib><creatorcontrib>Tanaka, Yuto</creatorcontrib><creatorcontrib>Obara, Go</creatorcontrib><creatorcontrib>Miyanishi, Tomoya</creatorcontrib><creatorcontrib>Sakai, Tetsuo</creatorcontrib><creatorcontrib>Sumiyoshi, Tetsumi</creatorcontrib><creatorcontrib>Sekita, Hitoshi</creatorcontrib><creatorcontrib>Hasegawa, Makoto</creatorcontrib><creatorcontrib>Viktorovitch, Pierre</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terakawa, Mitsuhiro</au><au>Takeda, Seiji</au><au>Tanaka, Yuto</au><au>Obara, Go</au><au>Miyanishi, Tomoya</au><au>Sakai, Tetsuo</au><au>Sumiyoshi, Tetsumi</au><au>Sekita, Hitoshi</au><au>Hasegawa, Makoto</au><au>Viktorovitch, Pierre</au><au>Obara, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced localized near field and scattered far field for surface nanophotonics applications</atitle><jtitle>Progress in quantum electronics</jtitle><date>2012-01</date><risdate>2012</risdate><volume>36</volume><issue>1</issue><spage>194</spage><epage>271</epage><pages>194-271</pages><issn>0079-6727</issn><eissn>1873-1627</eissn><abstract>The scattering physics of photons is traced back to Rayleigh scattering theory in 1871 and Mie scattering theory in 1908. However, the scattering near field and far field have recently emerged again as a new fundamental physics and innovative nanoprocessing technology in quantum electronics and photonic devices. An enhanced near field generated by plasmonic particles can concentrate optical energy into a nanoscale space as a nanolens even with near infrared laser pumping. This plasmonic nanophotonics extends the existing optical science to a new class of photonics inclusive of surface enhanced Raman scattering, nanoprocessing of advanced electronic and photonic materials, etc. The Mie scattering near field also opens up new fields. The Anderson localization of light in a planar random photonic crystal laser is also a new class of quantum electronics devices, where Slow Bloch Mode is scattered by artificial structural randomness in a photonic crystal. In this contribution we will review the recent efforts of our scattering photonics research, which have resulted in significant advances in the plasmonic surface photonics of near-field and far-field nano/micro photonics and the Anderson localization in random lasing.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pquantelec.2012.03.006</doi><tpages>78</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6727 |
ispartof | Progress in quantum electronics, 2012-01, Vol.36 (1), p.194-271 |
issn | 0079-6727 1873-1627 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038256352 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anderson localization Nanocomposites Nanomaterials Nanoprocessing Nanostructure Near field Near fields Photonics Plasmonics Quantum electronics Random lasing Random photonic crystal Scattering Surface ripple structures |
title | Enhanced localized near field and scattered far field for surface nanophotonics applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20localized%20near%20field%20and%20scattered%20far%20field%20for%20surface%20nanophotonics%20applications&rft.jtitle=Progress%20in%20quantum%20electronics&rft.au=Terakawa,%20Mitsuhiro&rft.date=2012-01&rft.volume=36&rft.issue=1&rft.spage=194&rft.epage=271&rft.pages=194-271&rft.issn=0079-6727&rft.eissn=1873-1627&rft_id=info:doi/10.1016/j.pquantelec.2012.03.006&rft_dat=%3Cproquest_cross%3E1038256352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038256352&rft_id=info:pmid/&rft_els_id=S0079672712000079&rfr_iscdi=true |