Reliable agnostic learning
It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable tha...
Gespeichert in:
Veröffentlicht in: | Journal of computer and system sciences 2012-09, Vol.78 (5), p.1481-1495 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1495 |
---|---|
container_issue | 5 |
container_start_page | 1481 |
container_title | Journal of computer and system sciences |
container_volume | 78 |
creator | Kalai, Adam Tauman Kanade, Varun Mansour, Yishay |
description | It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions.
► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting. |
doi_str_mv | 10.1016/j.jcss.2011.12.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038256208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000012000256</els_id><sourcerecordid>1038256208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMoWFf_wJ726KV1kmyTFLzI4hcsCKLnkI_pktJt16Qr-O_NUs_OZS7vDcwjZEmhokDFXVd1LqWKAaUVZRUwcUYKCg2UTLL1OSkAGCshzyW5SqmDDNaCF2T5jn0wtseV2Q1jmoJb9WjiEIbdNbloTZ_w5m8vyOfT48fmpdy-Pb9uHral41JOpVWoLDa1t43n4KhnYi2Zt5JbAARqLW9b0daKghW19crV3kjVusZK48WaL8jtfPcQx68jpknvQ3LY92bA8Zg0Ba5YLRiojLIZdXFMKWKrDzHsTfzJkD6F0J0-hdCnEJoynUNk6X6WMD_xHTDq5AIODn2I6Cbtx_Cf_gtAMGXX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038256208</pqid></control><display><type>article</type><title>Reliable agnostic learning</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kalai, Adam Tauman ; Kanade, Varun ; Mansour, Yishay</creator><creatorcontrib>Kalai, Adam Tauman ; Kanade, Varun ; Mansour, Yishay</creatorcontrib><description>It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions.
► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2011.12.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Agnostic learning ; Algorithms ; Classification ; Classifiers ; Computer simulation ; Error detection ; Learning ; Mathematical analysis ; Mathematical models ; PAC learning ; Queries</subject><ispartof>Journal of computer and system sciences, 2012-09, Vol.78 (5), p.1481-1495</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</citedby><cites>FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcss.2011.12.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kalai, Adam Tauman</creatorcontrib><creatorcontrib>Kanade, Varun</creatorcontrib><creatorcontrib>Mansour, Yishay</creatorcontrib><title>Reliable agnostic learning</title><title>Journal of computer and system sciences</title><description>It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions.
► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.</description><subject>Agnostic learning</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer simulation</subject><subject>Error detection</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>PAC learning</subject><subject>Queries</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMoWFf_wJ726KV1kmyTFLzI4hcsCKLnkI_pktJt16Qr-O_NUs_OZS7vDcwjZEmhokDFXVd1LqWKAaUVZRUwcUYKCg2UTLL1OSkAGCshzyW5SqmDDNaCF2T5jn0wtseV2Q1jmoJb9WjiEIbdNbloTZ_w5m8vyOfT48fmpdy-Pb9uHral41JOpVWoLDa1t43n4KhnYi2Zt5JbAARqLW9b0daKghW19crV3kjVusZK48WaL8jtfPcQx68jpknvQ3LY92bA8Zg0Ba5YLRiojLIZdXFMKWKrDzHsTfzJkD6F0J0-hdCnEJoynUNk6X6WMD_xHTDq5AIODn2I6Cbtx_Cf_gtAMGXX</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Kalai, Adam Tauman</creator><creator>Kanade, Varun</creator><creator>Mansour, Yishay</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201209</creationdate><title>Reliable agnostic learning</title><author>Kalai, Adam Tauman ; Kanade, Varun ; Mansour, Yishay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agnostic learning</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer simulation</topic><topic>Error detection</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>PAC learning</topic><topic>Queries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalai, Adam Tauman</creatorcontrib><creatorcontrib>Kanade, Varun</creatorcontrib><creatorcontrib>Mansour, Yishay</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalai, Adam Tauman</au><au>Kanade, Varun</au><au>Mansour, Yishay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable agnostic learning</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2012-09</date><risdate>2012</risdate><volume>78</volume><issue>5</issue><spage>1481</spage><epage>1495</epage><pages>1481-1495</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions.
► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2011.12.026</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0000 |
ispartof | Journal of computer and system sciences, 2012-09, Vol.78 (5), p.1481-1495 |
issn | 0022-0000 1090-2724 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038256208 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Agnostic learning Algorithms Classification Classifiers Computer simulation Error detection Learning Mathematical analysis Mathematical models PAC learning Queries |
title | Reliable agnostic learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20agnostic%20learning&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Kalai,%20Adam%20Tauman&rft.date=2012-09&rft.volume=78&rft.issue=5&rft.spage=1481&rft.epage=1495&rft.pages=1481-1495&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2011.12.026&rft_dat=%3Cproquest_cross%3E1038256208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038256208&rft_id=info:pmid/&rft_els_id=S0022000012000256&rfr_iscdi=true |