Reliable agnostic learning

It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 2012-09, Vol.78 (5), p.1481-1495
Hauptverfasser: Kalai, Adam Tauman, Kanade, Varun, Mansour, Yishay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1495
container_issue 5
container_start_page 1481
container_title Journal of computer and system sciences
container_volume 78
creator Kalai, Adam Tauman
Kanade, Varun
Mansour, Yishay
description It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions. ► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.
doi_str_mv 10.1016/j.jcss.2011.12.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038256208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000012000256</els_id><sourcerecordid>1038256208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMoWFf_wJ726KV1kmyTFLzI4hcsCKLnkI_pktJt16Qr-O_NUs_OZS7vDcwjZEmhokDFXVd1LqWKAaUVZRUwcUYKCg2UTLL1OSkAGCshzyW5SqmDDNaCF2T5jn0wtseV2Q1jmoJb9WjiEIbdNbloTZ_w5m8vyOfT48fmpdy-Pb9uHral41JOpVWoLDa1t43n4KhnYi2Zt5JbAARqLW9b0daKghW19crV3kjVusZK48WaL8jtfPcQx68jpknvQ3LY92bA8Zg0Ba5YLRiojLIZdXFMKWKrDzHsTfzJkD6F0J0-hdCnEJoynUNk6X6WMD_xHTDq5AIODn2I6Cbtx_Cf_gtAMGXX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038256208</pqid></control><display><type>article</type><title>Reliable agnostic learning</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kalai, Adam Tauman ; Kanade, Varun ; Mansour, Yishay</creator><creatorcontrib>Kalai, Adam Tauman ; Kanade, Varun ; Mansour, Yishay</creatorcontrib><description>It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions. ► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2011.12.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Agnostic learning ; Algorithms ; Classification ; Classifiers ; Computer simulation ; Error detection ; Learning ; Mathematical analysis ; Mathematical models ; PAC learning ; Queries</subject><ispartof>Journal of computer and system sciences, 2012-09, Vol.78 (5), p.1481-1495</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</citedby><cites>FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcss.2011.12.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kalai, Adam Tauman</creatorcontrib><creatorcontrib>Kanade, Varun</creatorcontrib><creatorcontrib>Mansour, Yishay</creatorcontrib><title>Reliable agnostic learning</title><title>Journal of computer and system sciences</title><description>It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions. ► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.</description><subject>Agnostic learning</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer simulation</subject><subject>Error detection</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>PAC learning</subject><subject>Queries</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMoWFf_wJ726KV1kmyTFLzI4hcsCKLnkI_pktJt16Qr-O_NUs_OZS7vDcwjZEmhokDFXVd1LqWKAaUVZRUwcUYKCg2UTLL1OSkAGCshzyW5SqmDDNaCF2T5jn0wtseV2Q1jmoJb9WjiEIbdNbloTZ_w5m8vyOfT48fmpdy-Pb9uHral41JOpVWoLDa1t43n4KhnYi2Zt5JbAARqLW9b0daKghW19crV3kjVusZK48WaL8jtfPcQx68jpknvQ3LY92bA8Zg0Ba5YLRiojLIZdXFMKWKrDzHsTfzJkD6F0J0-hdCnEJoynUNk6X6WMD_xHTDq5AIODn2I6Cbtx_Cf_gtAMGXX</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Kalai, Adam Tauman</creator><creator>Kanade, Varun</creator><creator>Mansour, Yishay</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201209</creationdate><title>Reliable agnostic learning</title><author>Kalai, Adam Tauman ; Kanade, Varun ; Mansour, Yishay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b8e8be95db9d30c1d26472db73b00e01bb3ff6f5810b65bd8c5da78fc9b7ad643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agnostic learning</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer simulation</topic><topic>Error detection</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>PAC learning</topic><topic>Queries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalai, Adam Tauman</creatorcontrib><creatorcontrib>Kanade, Varun</creatorcontrib><creatorcontrib>Mansour, Yishay</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalai, Adam Tauman</au><au>Kanade, Varun</au><au>Mansour, Yishay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable agnostic learning</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2012-09</date><risdate>2012</risdate><volume>78</volume><issue>5</issue><spage>1481</spage><epage>1495</epage><pages>1481-1495</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>It is well known that in many applications erroneous predictions of one type or another must be avoided. In some applications, like spam detection, false positive errors are serious problems. In other applications, like medical diagnosis, abstaining from making a prediction may be more desirable than making an incorrect prediction. In this paper we consider different types of reliable classifiers suited for such situations. We formalize the notion and study properties of reliable classifiers in the spirit of agnostic learning (Haussler, 1992; Kearns, Schapire, and Sellie, 1994), a PAC-like model where no assumption is made on the function being learned. We then give two algorithms for reliable agnostic learning under natural distributions. The first reliably learns DNFs with no false positives using membership queries. The second reliably learns halfspaces from random examples with no false positives or false negatives, but the classifier sometimes abstains from making predictions. ► Formal models for reliable learning in the agnostic noise setting. ► Reduction from standard agnostic learning to reliable agnostic learning. ► DNF learning algorithm in positive-reliable (one-sided error) setting. ► Algorithm to learn halfspace sandwiches in fully-reliable setting.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2011.12.026</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2012-09, Vol.78 (5), p.1481-1495
issn 0022-0000
1090-2724
language eng
recordid cdi_proquest_miscellaneous_1038256208
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Agnostic learning
Algorithms
Classification
Classifiers
Computer simulation
Error detection
Learning
Mathematical analysis
Mathematical models
PAC learning
Queries
title Reliable agnostic learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20agnostic%20learning&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Kalai,%20Adam%20Tauman&rft.date=2012-09&rft.volume=78&rft.issue=5&rft.spage=1481&rft.epage=1495&rft.pages=1481-1495&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2011.12.026&rft_dat=%3Cproquest_cross%3E1038256208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038256208&rft_id=info:pmid/&rft_els_id=S0022000012000256&rfr_iscdi=true