SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION
The solutions of a family of semilinear stochastic equations in a Hilbert space with a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily only a growth condition assumption. An arbitrary member of the family of fractional Brownian motions can be used in...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2009-01, Vol.40 (6), p.2286-2315 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2315 |
---|---|
container_issue | 6 |
container_start_page | 2286 |
container_title | SIAM journal on mathematical analysis |
container_volume | 40 |
creator | DUNCAN, T. E MASLOWSKI, B PASIK-DUNCAN, B |
description | The solutions of a family of semilinear stochastic equations in a Hilbert space with a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily only a growth condition assumption. An arbitrary member of the family of fractional Brownian motions can be used in these equations. Existence and uniqueness for both weak and mild solutions are obtained for some of these semilinear equations. The weak solutions are obtained by a measure transformation that verifies absolute continuity with respect to the measure for the solution of the associated linear equation. Some examples of stochastic differential and partial differential equations are given that satisfy the assumptions for the solutions of the semilinear equations. |
doi_str_mv | 10.1137/08071764X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038251781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597150131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3ff2d4f15a14332fb80f8278c4335b3704a90ae3527098a98ad4d9fc69deda083</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsD4W_oNBEHQRvfNIZmY5htQOpIk2Ed2FaZKBlthopl34701RuhAuXO7hu4fDQeiKwD0hTDyABEFExN-P0ISACgNBQn6MJgAsCggncIrOvF8DkIgrmKCySOYmNVmiF7go83imi9LEOHl51aXJswKbDGs8M-ljsihx8azjBL-ZcjaK04WO94xO8eMif8uMzvA83ysX6MTZzreXf_scvU6TMp4Faf5kYp0GNQv5NmDO0YY7ElrCGaNuKcFJKmQ9XuGSCeBWgW1ZSAUoacdpeKNcHammbSxIdo5uf30_h_5r1_pt9bHyddt1dtP2O18RYJKGREgyotf_0HW_GzZjukpRpkCKMBqhu1-oHnrvh9ZVn8Pqww7fo1O1r7c61DuyN3-G1te2c4Pd1Ct_eKAUlCKEsh_VDG-z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923908756</pqid></control><display><type>article</type><title>SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>DUNCAN, T. E ; MASLOWSKI, B ; PASIK-DUNCAN, B</creator><creatorcontrib>DUNCAN, T. E ; MASLOWSKI, B ; PASIK-DUNCAN, B</creatorcontrib><description>The solutions of a family of semilinear stochastic equations in a Hilbert space with a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily only a growth condition assumption. An arbitrary member of the family of fractional Brownian motions can be used in these equations. Existence and uniqueness for both weak and mild solutions are obtained for some of these semilinear equations. The weak solutions are obtained by a measure transformation that verifies absolute continuity with respect to the measure for the solution of the associated linear equation. Some examples of stochastic differential and partial differential equations are given that satisfy the assumptions for the solutions of the semilinear equations.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/08071764X</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Brownian motion ; Continuity ; Differential equations ; Exact sciences and technology ; Functional analysis ; Hilbert space ; Integrals ; Linear equations ; Mathematical analysis ; Mathematical functions ; Mathematics ; Noise ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Stochasticity ; Transformations ; Uniqueness</subject><ispartof>SIAM journal on mathematical analysis, 2009-01, Vol.40 (6), p.2286-2315</ispartof><rights>2009 INIST-CNRS</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3ff2d4f15a14332fb80f8278c4335b3704a90ae3527098a98ad4d9fc69deda083</citedby><cites>FETCH-LOGICAL-c354t-3ff2d4f15a14332fb80f8278c4335b3704a90ae3527098a98ad4d9fc69deda083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22099112$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUNCAN, T. E</creatorcontrib><creatorcontrib>MASLOWSKI, B</creatorcontrib><creatorcontrib>PASIK-DUNCAN, B</creatorcontrib><title>SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION</title><title>SIAM journal on mathematical analysis</title><description>The solutions of a family of semilinear stochastic equations in a Hilbert space with a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily only a growth condition assumption. An arbitrary member of the family of fractional Brownian motions can be used in these equations. Existence and uniqueness for both weak and mild solutions are obtained for some of these semilinear equations. The weak solutions are obtained by a measure transformation that verifies absolute continuity with respect to the measure for the solution of the associated linear equation. Some examples of stochastic differential and partial differential equations are given that satisfy the assumptions for the solutions of the semilinear equations.</description><subject>Applied mathematics</subject><subject>Brownian motion</subject><subject>Continuity</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Hilbert space</subject><subject>Integrals</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Stochasticity</subject><subject>Transformations</subject><subject>Uniqueness</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLw0AUhQdRsD4W_oNBEHQRvfNIZmY5htQOpIk2Ed2FaZKBlthopl34701RuhAuXO7hu4fDQeiKwD0hTDyABEFExN-P0ISACgNBQn6MJgAsCggncIrOvF8DkIgrmKCySOYmNVmiF7go83imi9LEOHl51aXJswKbDGs8M-ljsihx8azjBL-ZcjaK04WO94xO8eMif8uMzvA83ysX6MTZzreXf_scvU6TMp4Faf5kYp0GNQv5NmDO0YY7ElrCGaNuKcFJKmQ9XuGSCeBWgW1ZSAUoacdpeKNcHammbSxIdo5uf30_h_5r1_pt9bHyddt1dtP2O18RYJKGREgyotf_0HW_GzZjukpRpkCKMBqhu1-oHnrvh9ZVn8Pqww7fo1O1r7c61DuyN3-G1te2c4Pd1Ct_eKAUlCKEsh_VDG-z</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>DUNCAN, T. E</creator><creator>MASLOWSKI, B</creator><creator>PASIK-DUNCAN, B</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION</title><author>DUNCAN, T. E ; MASLOWSKI, B ; PASIK-DUNCAN, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3ff2d4f15a14332fb80f8278c4335b3704a90ae3527098a98ad4d9fc69deda083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Brownian motion</topic><topic>Continuity</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Hilbert space</topic><topic>Integrals</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Stochasticity</topic><topic>Transformations</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUNCAN, T. E</creatorcontrib><creatorcontrib>MASLOWSKI, B</creatorcontrib><creatorcontrib>PASIK-DUNCAN, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUNCAN, T. E</au><au>MASLOWSKI, B</au><au>PASIK-DUNCAN, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>40</volume><issue>6</issue><spage>2286</spage><epage>2315</epage><pages>2286-2315</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The solutions of a family of semilinear stochastic equations in a Hilbert space with a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily only a growth condition assumption. An arbitrary member of the family of fractional Brownian motions can be used in these equations. Existence and uniqueness for both weak and mild solutions are obtained for some of these semilinear equations. The weak solutions are obtained by a measure transformation that verifies absolute continuity with respect to the measure for the solution of the associated linear equation. Some examples of stochastic differential and partial differential equations are given that satisfy the assumptions for the solutions of the semilinear equations.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/08071764X</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2009-01, Vol.40 (6), p.2286-2315 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038251781 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Brownian motion Continuity Differential equations Exact sciences and technology Functional analysis Hilbert space Integrals Linear equations Mathematical analysis Mathematical functions Mathematics Noise Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Stochasticity Transformations Uniqueness |
title | SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEMILINEAR%20STOCHASTIC%20EQUATIONS%20IN%20A%20HILBERT%20SPACE%20WITH%20A%20FRACTIONAL%20BROWNIAN%20MOTION&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=DUNCAN,%20T.%20E&rft.date=2009-01-01&rft.volume=40&rft.issue=6&rft.spage=2286&rft.epage=2315&rft.pages=2286-2315&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/08071764X&rft_dat=%3Cproquest_cross%3E2597150131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923908756&rft_id=info:pmid/&rfr_iscdi=true |