A Simple Proof of Dieudonne-Manin Classification Theorem

The Dieudonne Manin classification theorem on φ-modules (φ-isocrystals) over a perfect field plays a very important role in p-adic Hodge theory. In this note, in a more general setting we give a new proof of this result, and in the course of the proof, we also give an explicit construction of the Ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2012-08, Vol.28 (8), p.1553-1574
Hauptverfasser: Ding, Yi Wen, Ouyang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1574
container_issue 8
container_start_page 1553
container_title Acta mathematica Sinica. English series
container_volume 28
creator Ding, Yi Wen
Ouyang, Yi
description The Dieudonne Manin classification theorem on φ-modules (φ-isocrystals) over a perfect field plays a very important role in p-adic Hodge theory. In this note, in a more general setting we give a new proof of this result, and in the course of the proof, we also give an explicit construction of the Harder Narasimhan filtration of a φ-module.
doi_str_mv 10.1007/s10114-012-0490-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038251334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42758332</cqvip_id><sourcerecordid>1038251334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2908-fdb58db9da73cf89faeab7f2a7b928c63b6c4ff960b31877a3680c73f055d0093</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2IGzejN8lMHstSn1BRsK6HTCZpp0yTNuks_PemTBERhAv3Lr5z7uEgdInhFgPwu4gB4yIHTHIoJOTiCI1wQWXOGebHh1uUmJ2isxhXAGUpgY2QmGQf7XrTmew9eG-zNPet6RvvnMlflWtdNu1UjK1ttdq13mXzpfHBrM_RiVVdNBeHPUafjw_z6XM-e3t6mU5muSYSRG6buhRNLRvFqbZCWmVUzS1RvJZEaEZrpgtrJYOaYsG5okyA5tSmgA2ApGN0M_hugt_2Ju6qdRu16TrljO9jhYEKUmJKi4Re_0FXvg8upUsUKaDEgpWJwgOlg48xGFttQrtW4StB1b7LauiySl1W-y4rkTRk0MTEuoUJv53_F10dHi29W2yT7udTQXgpKCX0G5Vuf9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024051865</pqid></control><display><type>article</type><title>A Simple Proof of Dieudonne-Manin Classification Theorem</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ding, Yi Wen ; Ouyang, Yi</creator><creatorcontrib>Ding, Yi Wen ; Ouyang, Yi</creatorcontrib><description>The Dieudonne Manin classification theorem on φ-modules (φ-isocrystals) over a perfect field plays a very important role in p-adic Hodge theory. In this note, in a more general setting we give a new proof of this result, and in the course of the proof, we also give an explicit construction of the Harder Narasimhan filtration of a φ-module.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-012-0490-8</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Classification ; Construction ; Filtration ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Proving ; Studies ; Theorems ; 分类定理 ; 模块 ; 简单证明</subject><ispartof>Acta mathematica Sinica. English series, 2012-08, Vol.28 (8), p.1553-1574</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2908-fdb58db9da73cf89faeab7f2a7b928c63b6c4ff960b31877a3680c73f055d0093</citedby><cites>FETCH-LOGICAL-c2908-fdb58db9da73cf89faeab7f2a7b928c63b6c4ff960b31877a3680c73f055d0093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-012-0490-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-012-0490-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ding, Yi Wen</creatorcontrib><creatorcontrib>Ouyang, Yi</creatorcontrib><title>A Simple Proof of Dieudonne-Manin Classification Theorem</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>The Dieudonne Manin classification theorem on φ-modules (φ-isocrystals) over a perfect field plays a very important role in p-adic Hodge theory. In this note, in a more general setting we give a new proof of this result, and in the course of the proof, we also give an explicit construction of the Harder Narasimhan filtration of a φ-module.</description><subject>Classification</subject><subject>Construction</subject><subject>Filtration</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Proving</subject><subject>Studies</subject><subject>Theorems</subject><subject>分类定理</subject><subject>模块</subject><subject>简单证明</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2IGzejN8lMHstSn1BRsK6HTCZpp0yTNuks_PemTBERhAv3Lr5z7uEgdInhFgPwu4gB4yIHTHIoJOTiCI1wQWXOGebHh1uUmJ2isxhXAGUpgY2QmGQf7XrTmew9eG-zNPet6RvvnMlflWtdNu1UjK1ttdq13mXzpfHBrM_RiVVdNBeHPUafjw_z6XM-e3t6mU5muSYSRG6buhRNLRvFqbZCWmVUzS1RvJZEaEZrpgtrJYOaYsG5okyA5tSmgA2ApGN0M_hugt_2Ju6qdRu16TrljO9jhYEKUmJKi4Re_0FXvg8upUsUKaDEgpWJwgOlg48xGFttQrtW4StB1b7LauiySl1W-y4rkTRk0MTEuoUJv53_F10dHi29W2yT7udTQXgpKCX0G5Vuf9I</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Ding, Yi Wen</creator><creator>Ouyang, Yi</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201208</creationdate><title>A Simple Proof of Dieudonne-Manin Classification Theorem</title><author>Ding, Yi Wen ; Ouyang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2908-fdb58db9da73cf89faeab7f2a7b928c63b6c4ff960b31877a3680c73f055d0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Construction</topic><topic>Filtration</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Proving</topic><topic>Studies</topic><topic>Theorems</topic><topic>分类定理</topic><topic>模块</topic><topic>简单证明</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yi Wen</creatorcontrib><creatorcontrib>Ouyang, Yi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yi Wen</au><au>Ouyang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Proof of Dieudonne-Manin Classification Theorem</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2012-08</date><risdate>2012</risdate><volume>28</volume><issue>8</issue><spage>1553</spage><epage>1574</epage><pages>1553-1574</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>The Dieudonne Manin classification theorem on φ-modules (φ-isocrystals) over a perfect field plays a very important role in p-adic Hodge theory. In this note, in a more general setting we give a new proof of this result, and in the course of the proof, we also give an explicit construction of the Harder Narasimhan filtration of a φ-module.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-012-0490-8</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2012-08, Vol.28 (8), p.1553-1574
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_1038251334
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Classification
Construction
Filtration
Mathematical analysis
Mathematics
Mathematics and Statistics
Proving
Studies
Theorems
分类定理
模块
简单证明
title A Simple Proof of Dieudonne-Manin Classification Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Proof%20of%20Dieudonne-Manin%20Classification%20Theorem&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Ding,%20Yi%20Wen&rft.date=2012-08&rft.volume=28&rft.issue=8&rft.spage=1553&rft.epage=1574&rft.pages=1553-1574&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-012-0490-8&rft_dat=%3Cproquest_cross%3E1038251334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024051865&rft_id=info:pmid/&rft_cqvip_id=42758332&rfr_iscdi=true