HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION
Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2009-01, Vol.47 (3), p.2203-2223 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2223 |
---|---|
container_issue | 3 |
container_start_page | 2203 |
container_title | SIAM journal on numerical analysis |
container_volume | 47 |
creator | SCHAEFFER, JACK |
description | Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension. |
doi_str_mv | 10.1137/080729049 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038249072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862727</jstor_id><sourcerecordid>27862727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhSdGExFd-ANMGle6qM6r83DXYKGTVKpQ2DalM5NAgMIMLPz3jsGwcHNv7smXk3sOAPcIviBE-CsUkGMJqbwAPQRlEnPE4SXoQUhYjCiW1-DG-xUMt0CkB95yNcqzSVRO3sOs1EcWTT8LVVVqPIqGZZDyLCrUOEsn0bxIp-U8yr5maaXK8S24ss3am7u_3QezYVYN8rgoR2qQFnGLKTrEZKENZnBhIaeaSwwptsxKbqwgiUGcG5xgLTVpNG2ETpBmrG2tEBIxzQ0lffB08t25bn80_lBvlr4163WzNd3R1yhEwVSG3AF9_IeuuqPbhu9qiTFikEkZoOcT1LrOe2dsvXPLTeO-g1P9W2J9LjGwDyd25Q-dO4OYC4Y55uQHH6tlfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922160699</pqid></control><display><type>article</type><title>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>SCHAEFFER, JACK</creator><creatorcontrib>SCHAEFFER, JACK</creatorcontrib><description>Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/080729049</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boltzmann Vlasov equation ; Copyright ; Error bounds ; Errors ; Interpolation ; Mathematical models ; Mathematics ; Methods ; Numerical analysis ; Relativistic particles ; Splines ; Splitting ; Vlasov equations</subject><ispartof>SIAM journal on numerical analysis, 2009-01, Vol.47 (3), p.2203-2223</ispartof><rights>Copyright ©2010 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</citedby><cites>FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862727$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862727$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>SCHAEFFER, JACK</creatorcontrib><title>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</title><title>SIAM journal on numerical analysis</title><description>Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.</description><subject>Applied mathematics</subject><subject>Boltzmann Vlasov equation</subject><subject>Copyright</subject><subject>Error bounds</subject><subject>Errors</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Relativistic particles</subject><subject>Splines</subject><subject>Splitting</subject><subject>Vlasov equations</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtPwkAUhSdGExFd-ANMGle6qM6r83DXYKGTVKpQ2DalM5NAgMIMLPz3jsGwcHNv7smXk3sOAPcIviBE-CsUkGMJqbwAPQRlEnPE4SXoQUhYjCiW1-DG-xUMt0CkB95yNcqzSVRO3sOs1EcWTT8LVVVqPIqGZZDyLCrUOEsn0bxIp-U8yr5maaXK8S24ss3am7u_3QezYVYN8rgoR2qQFnGLKTrEZKENZnBhIaeaSwwptsxKbqwgiUGcG5xgLTVpNG2ETpBmrG2tEBIxzQ0lffB08t25bn80_lBvlr4163WzNd3R1yhEwVSG3AF9_IeuuqPbhu9qiTFikEkZoOcT1LrOe2dsvXPLTeO-g1P9W2J9LjGwDyd25Q-dO4OYC4Y55uQHH6tlfg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>SCHAEFFER, JACK</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</title><author>SCHAEFFER, JACK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Boltzmann Vlasov equation</topic><topic>Copyright</topic><topic>Error bounds</topic><topic>Errors</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Relativistic particles</topic><topic>Splines</topic><topic>Splitting</topic><topic>Vlasov equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHAEFFER, JACK</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHAEFFER, JACK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>47</volume><issue>3</issue><spage>2203</spage><epage>2223</epage><pages>2203-2223</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080729049</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2009-01, Vol.47 (3), p.2203-2223 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038249072 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Applied mathematics Boltzmann Vlasov equation Copyright Error bounds Errors Interpolation Mathematical models Mathematics Methods Numerical analysis Relativistic particles Splines Splitting Vlasov equations |
title | HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGHER%20ORDER%20TIME%20SPLITTING%20FOR%20THE%20LINEAR%20VLASOV%20EQUATION&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=SCHAEFFER,%20JACK&rft.date=2009-01-01&rft.volume=47&rft.issue=3&rft.spage=2203&rft.epage=2223&rft.pages=2203-2223&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/080729049&rft_dat=%3Cjstor_proqu%3E27862727%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922160699&rft_id=info:pmid/&rft_jstor_id=27862727&rfr_iscdi=true |