HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION

Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2009-01, Vol.47 (3), p.2203-2223
1. Verfasser: SCHAEFFER, JACK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2223
container_issue 3
container_start_page 2203
container_title SIAM journal on numerical analysis
container_volume 47
creator SCHAEFFER, JACK
description Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.
doi_str_mv 10.1137/080729049
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038249072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862727</jstor_id><sourcerecordid>27862727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhSdGExFd-ANMGle6qM6r83DXYKGTVKpQ2DalM5NAgMIMLPz3jsGwcHNv7smXk3sOAPcIviBE-CsUkGMJqbwAPQRlEnPE4SXoQUhYjCiW1-DG-xUMt0CkB95yNcqzSVRO3sOs1EcWTT8LVVVqPIqGZZDyLCrUOEsn0bxIp-U8yr5maaXK8S24ss3am7u_3QezYVYN8rgoR2qQFnGLKTrEZKENZnBhIaeaSwwptsxKbqwgiUGcG5xgLTVpNG2ETpBmrG2tEBIxzQ0lffB08t25bn80_lBvlr4163WzNd3R1yhEwVSG3AF9_IeuuqPbhu9qiTFikEkZoOcT1LrOe2dsvXPLTeO-g1P9W2J9LjGwDyd25Q-dO4OYC4Y55uQHH6tlfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922160699</pqid></control><display><type>article</type><title>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>SCHAEFFER, JACK</creator><creatorcontrib>SCHAEFFER, JACK</creatorcontrib><description>Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/080729049</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boltzmann Vlasov equation ; Copyright ; Error bounds ; Errors ; Interpolation ; Mathematical models ; Mathematics ; Methods ; Numerical analysis ; Relativistic particles ; Splines ; Splitting ; Vlasov equations</subject><ispartof>SIAM journal on numerical analysis, 2009-01, Vol.47 (3), p.2203-2223</ispartof><rights>Copyright ©2010 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</citedby><cites>FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862727$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862727$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>SCHAEFFER, JACK</creatorcontrib><title>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</title><title>SIAM journal on numerical analysis</title><description>Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.</description><subject>Applied mathematics</subject><subject>Boltzmann Vlasov equation</subject><subject>Copyright</subject><subject>Error bounds</subject><subject>Errors</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Relativistic particles</subject><subject>Splines</subject><subject>Splitting</subject><subject>Vlasov equations</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtPwkAUhSdGExFd-ANMGle6qM6r83DXYKGTVKpQ2DalM5NAgMIMLPz3jsGwcHNv7smXk3sOAPcIviBE-CsUkGMJqbwAPQRlEnPE4SXoQUhYjCiW1-DG-xUMt0CkB95yNcqzSVRO3sOs1EcWTT8LVVVqPIqGZZDyLCrUOEsn0bxIp-U8yr5maaXK8S24ss3am7u_3QezYVYN8rgoR2qQFnGLKTrEZKENZnBhIaeaSwwptsxKbqwgiUGcG5xgLTVpNG2ETpBmrG2tEBIxzQ0lffB08t25bn80_lBvlr4163WzNd3R1yhEwVSG3AF9_IeuuqPbhu9qiTFikEkZoOcT1LrOe2dsvXPLTeO-g1P9W2J9LjGwDyd25Q-dO4OYC4Y55uQHH6tlfg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>SCHAEFFER, JACK</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</title><author>SCHAEFFER, JACK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-3bde260bf074d792042f6f97ef835e177e252d9d3ad4a8d51d66ccf88916d7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Boltzmann Vlasov equation</topic><topic>Copyright</topic><topic>Error bounds</topic><topic>Errors</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Relativistic particles</topic><topic>Splines</topic><topic>Splitting</topic><topic>Vlasov equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHAEFFER, JACK</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHAEFFER, JACK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>47</volume><issue>3</issue><spage>2203</spage><epage>2223</epage><pages>2203-2223</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Many semi-Lagrangian schemes for solving the Vlasov equation use a second order time splitting method proposed by Cheng and Knorr. In this paper a fourth order time splitting method is proposed. This is combined with cubic spline interpolation (in x and v), and a rigorous ℓ 2 error bound is obtained for the linear Vlasov equation in arbitrary space dimension. Also, this method and that of Cheng and Knorr are implemented and compared for a test case in one space dimension.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080729049</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2009-01, Vol.47 (3), p.2203-2223
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1038249072
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Applied mathematics
Boltzmann Vlasov equation
Copyright
Error bounds
Errors
Interpolation
Mathematical models
Mathematics
Methods
Numerical analysis
Relativistic particles
Splines
Splitting
Vlasov equations
title HIGHER ORDER TIME SPLITTING FOR THE LINEAR VLASOV EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGHER%20ORDER%20TIME%20SPLITTING%20FOR%20THE%20LINEAR%20VLASOV%20EQUATION&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=SCHAEFFER,%20JACK&rft.date=2009-01-01&rft.volume=47&rft.issue=3&rft.spage=2203&rft.epage=2223&rft.pages=2203-2223&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/080729049&rft_dat=%3Cjstor_proqu%3E27862727%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922160699&rft_id=info:pmid/&rft_jstor_id=27862727&rfr_iscdi=true