Global $BV$ Solutions for the P -System with Frictional Damping
We construct global $BV$ solutions to the Cauchy problem for the damped $p$-system, under initial data with distinct end-states. The solution will be realized as a perturbation of its asymptotic profile, in which the specific volume satisfies the porous media equation and the velocity obeys the clas...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2009-01, Vol.41 (3), p.1190-1205 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1205 |
---|---|
container_issue | 3 |
container_start_page | 1190 |
container_title | SIAM journal on mathematical analysis |
container_volume | 41 |
creator | Dafermos, Constantine M. Pan, Ronghua |
description | We construct global $BV$ solutions to the Cauchy problem for the damped $p$-system, under initial data with distinct end-states. The solution will be realized as a perturbation of its asymptotic profile, in which the specific volume satisfies the porous media equation and the velocity obeys the classical Darcy law for gas flow through a porous medium. |
doi_str_mv | 10.1137/080735126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038248670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038248670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a65ad8457664311757188ff8bdd1b9ac712f7a6b2d775233a6b0a008189e0ed73</originalsourceid><addsrcrecordid>eNpdkE9Lw0AUxBdRsFYPfoNFetBD9L3d7J-cRKutQkGh6jVsko1NSbpxN0H67U2pePD05vCbYd4Qco5wjcjVDWhQXCCTB2SEkIhIoYgPyQiAywhjhGNyEsIaAGWcwIjczmuXmZpO7j8mdOnqvqvcJtDSedqtLH2l0XIbOtvQ76pb0Zmv8h0wGB5M01abz1NyVJo62LPfOybvs8e36VO0eJk_T-8WUc500kVGClPoWCgpY46ohEKty1JnRYFZYnKFrFRGZqxQSjDOBwkGQKNOLNhC8TG53Oe23n31NnRpU4Xc1rXZWNeHFIFrFmupYEAv_qFr1_uhc0gTxpPhdZQDdLWHcu9C8LZMW181xm-HpHS3ZPq3JP8BStJhiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923900116</pqid></control><display><type>article</type><title>Global $BV$ Solutions for the P -System with Frictional Damping</title><source>SIAM Journals Archive</source><creator>Dafermos, Constantine M. ; Pan, Ronghua</creator><creatorcontrib>Dafermos, Constantine M. ; Pan, Ronghua</creatorcontrib><description>We construct global $BV$ solutions to the Cauchy problem for the damped $p$-system, under initial data with distinct end-states. The solution will be realized as a perturbation of its asymptotic profile, in which the specific volume satisfies the porous media equation and the velocity obeys the classical Darcy law for gas flow through a porous medium.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/080735126</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Asymptotic properties ; Cauchy problem ; Cauchy problems ; Damping ; Density ; Gas flow ; Gases ; Law ; Mathematical analysis ; Perturbation methods ; Velocity</subject><ispartof>SIAM journal on mathematical analysis, 2009-01, Vol.41 (3), p.1190-1205</ispartof><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-a65ad8457664311757188ff8bdd1b9ac712f7a6b2d775233a6b0a008189e0ed73</citedby><cites>FETCH-LOGICAL-c289t-a65ad8457664311757188ff8bdd1b9ac712f7a6b2d775233a6b0a008189e0ed73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Dafermos, Constantine M.</creatorcontrib><creatorcontrib>Pan, Ronghua</creatorcontrib><title>Global $BV$ Solutions for the P -System with Frictional Damping</title><title>SIAM journal on mathematical analysis</title><description>We construct global $BV$ solutions to the Cauchy problem for the damped $p$-system, under initial data with distinct end-states. The solution will be realized as a perturbation of its asymptotic profile, in which the specific volume satisfies the porous media equation and the velocity obeys the classical Darcy law for gas flow through a porous medium.</description><subject>Applied mathematics</subject><subject>Asymptotic properties</subject><subject>Cauchy problem</subject><subject>Cauchy problems</subject><subject>Damping</subject><subject>Density</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Law</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Velocity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9Lw0AUxBdRsFYPfoNFetBD9L3d7J-cRKutQkGh6jVsko1NSbpxN0H67U2pePD05vCbYd4Qco5wjcjVDWhQXCCTB2SEkIhIoYgPyQiAywhjhGNyEsIaAGWcwIjczmuXmZpO7j8mdOnqvqvcJtDSedqtLH2l0XIbOtvQ76pb0Zmv8h0wGB5M01abz1NyVJo62LPfOybvs8e36VO0eJk_T-8WUc500kVGClPoWCgpY46ohEKty1JnRYFZYnKFrFRGZqxQSjDOBwkGQKNOLNhC8TG53Oe23n31NnRpU4Xc1rXZWNeHFIFrFmupYEAv_qFr1_uhc0gTxpPhdZQDdLWHcu9C8LZMW181xm-HpHS3ZPq3JP8BStJhiQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Dafermos, Constantine M.</creator><creator>Pan, Ronghua</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Global $BV$ Solutions for the P -System with Frictional Damping</title><author>Dafermos, Constantine M. ; Pan, Ronghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a65ad8457664311757188ff8bdd1b9ac712f7a6b2d775233a6b0a008189e0ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Asymptotic properties</topic><topic>Cauchy problem</topic><topic>Cauchy problems</topic><topic>Damping</topic><topic>Density</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Law</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dafermos, Constantine M.</creatorcontrib><creatorcontrib>Pan, Ronghua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dafermos, Constantine M.</au><au>Pan, Ronghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global $BV$ Solutions for the P -System with Frictional Damping</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>41</volume><issue>3</issue><spage>1190</spage><epage>1205</epage><pages>1190-1205</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We construct global $BV$ solutions to the Cauchy problem for the damped $p$-system, under initial data with distinct end-states. The solution will be realized as a perturbation of its asymptotic profile, in which the specific volume satisfies the porous media equation and the velocity obeys the classical Darcy law for gas flow through a porous medium.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080735126</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2009-01, Vol.41 (3), p.1190-1205 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038248670 |
source | SIAM Journals Archive |
subjects | Applied mathematics Asymptotic properties Cauchy problem Cauchy problems Damping Density Gas flow Gases Law Mathematical analysis Perturbation methods Velocity |
title | Global $BV$ Solutions for the P -System with Frictional Damping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20$BV$%20Solutions%20for%20the%20P%20-System%20with%20Frictional%20Damping&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Dafermos,%20Constantine%20M.&rft.date=2009-01-01&rft.volume=41&rft.issue=3&rft.spage=1190&rft.epage=1205&rft.pages=1190-1205&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/080735126&rft_dat=%3Cproquest_cross%3E1038248670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923900116&rft_id=info:pmid/&rfr_iscdi=true |