Families of Sets with Intersecting Clusters
A family of $k$-subsets $A_1,A_2,\ldots,A_d$ on $[n]=\{1,2,\ldots,n\}$ is called a $(d,c)$-cluster if the union $A_1\cup A_2 \cup\cdots\cup A_d$ contains at most $ck$ elements with $c
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2009-01, Vol.23 (3), p.1249-1260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 3 |
container_start_page | 1249 |
container_title | SIAM journal on discrete mathematics |
container_volume | 23 |
creator | Chen, William Y. C. Liu, Jiuqiang Wang, Larry X. W. |
description | A family of $k$-subsets $A_1,A_2,\ldots,A_d$ on $[n]=\{1,2,\ldots,n\}$ is called a $(d,c)$-cluster if the union $A_1\cup A_2 \cup\cdots\cup A_d$ contains at most $ck$ elements with $c |
doi_str_mv | 10.1137/080721662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038248086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599493511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-77bb9154d9d522e2ea82cc04615e7dfba0435928882e4c87bf2dd1ed602d09143</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRMFYP_oPgSZHozGY_j1JaLRQ8qOeQ7E40JU3qboL4702pePA078DDw8zL2CXCHWKu78GA5qgUP2IJgpWZRqGOWQJmysIAnrKzGDcAKATKhN0uy23TNhTTvk5faIjpVzN8pKtuoBDJDU33ns7bMe7Xc3ZSl22ki985Y2_Lxev8KVs_P67mD-vMcWOHTOuqsiiFt15yTpxKw50DoVCS9nVVgsil5cYYTsIZXdXceySvgHuwKPIZuz54d6H_HCkOxbaJjtq27KgfY4GQGz79YtSEXv1DN_0Yuum6wnKpcqH13ndzgFzoYwxUF7vQbMvwPZmKfWvFX2v5DyGDW_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925634774</pqid></control><display><type>article</type><title>Families of Sets with Intersecting Clusters</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Chen, William Y. C. ; Liu, Jiuqiang ; Wang, Larry X. W.</creator><creatorcontrib>Chen, William Y. C. ; Liu, Jiuqiang ; Wang, Larry X. W.</creatorcontrib><description>A family of $k$-subsets $A_1,A_2,\ldots,A_d$ on $[n]=\{1,2,\ldots,n\}$ is called a $(d,c)$-cluster if the union $A_1\cup A_2 \cup\cdots\cup A_d$ contains at most $ck$ elements with $c<d$. Let $\mathcal{F}$ be a family of $k$-subsets of an $n$-element set. We show that for $k\geq2$ and $n\geq k+2$, if every $(k,2)$-cluster of $\mathcal{F}$ is intersecting, then $\mathcal{F}$ contains no $(k-1)$-dimensional simplices. This leads to an affirmative answer to Mubayi's conjecture for $d=k$ based on Chvátal's simplex theorem. We also show that for any $d$ satisfying $3\leq d\leq k$ and $n\geq\frac{dk}{d-1}$, if every $(d,\frac{d+1}{2})$-cluster is intersecting, then $|\mathcal{F}|\leq{n-1\choose k-1}$ with equality only when $\mathcal{F}$ is a complete star. This result is an extension of both Frankl's theorem and Mubayi's theorem.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/080721662</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Clusters ; Equality ; Mathematical analysis ; Stars ; Theorems ; Unions</subject><ispartof>SIAM journal on discrete mathematics, 2009-01, Vol.23 (3), p.1249-1260</ispartof><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-77bb9154d9d522e2ea82cc04615e7dfba0435928882e4c87bf2dd1ed602d09143</citedby><cites>FETCH-LOGICAL-c289t-77bb9154d9d522e2ea82cc04615e7dfba0435928882e4c87bf2dd1ed602d09143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Liu, Jiuqiang</creatorcontrib><creatorcontrib>Wang, Larry X. W.</creatorcontrib><title>Families of Sets with Intersecting Clusters</title><title>SIAM journal on discrete mathematics</title><description>A family of $k$-subsets $A_1,A_2,\ldots,A_d$ on $[n]=\{1,2,\ldots,n\}$ is called a $(d,c)$-cluster if the union $A_1\cup A_2 \cup\cdots\cup A_d$ contains at most $ck$ elements with $c<d$. Let $\mathcal{F}$ be a family of $k$-subsets of an $n$-element set. We show that for $k\geq2$ and $n\geq k+2$, if every $(k,2)$-cluster of $\mathcal{F}$ is intersecting, then $\mathcal{F}$ contains no $(k-1)$-dimensional simplices. This leads to an affirmative answer to Mubayi's conjecture for $d=k$ based on Chvátal's simplex theorem. We also show that for any $d$ satisfying $3\leq d\leq k$ and $n\geq\frac{dk}{d-1}$, if every $(d,\frac{d+1}{2})$-cluster is intersecting, then $|\mathcal{F}|\leq{n-1\choose k-1}$ with equality only when $\mathcal{F}$ is a complete star. This result is an extension of both Frankl's theorem and Mubayi's theorem.</description><subject>Clusters</subject><subject>Equality</subject><subject>Mathematical analysis</subject><subject>Stars</subject><subject>Theorems</subject><subject>Unions</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1Lw0AQhhdRMFYP_oPgSZHozGY_j1JaLRQ8qOeQ7E40JU3qboL4702pePA078DDw8zL2CXCHWKu78GA5qgUP2IJgpWZRqGOWQJmysIAnrKzGDcAKATKhN0uy23TNhTTvk5faIjpVzN8pKtuoBDJDU33ns7bMe7Xc3ZSl22ki985Y2_Lxev8KVs_P67mD-vMcWOHTOuqsiiFt15yTpxKw50DoVCS9nVVgsil5cYYTsIZXdXceySvgHuwKPIZuz54d6H_HCkOxbaJjtq27KgfY4GQGz79YtSEXv1DN_0Yuum6wnKpcqH13ndzgFzoYwxUF7vQbMvwPZmKfWvFX2v5DyGDW_8</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Chen, William Y. C.</creator><creator>Liu, Jiuqiang</creator><creator>Wang, Larry X. W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Families of Sets with Intersecting Clusters</title><author>Chen, William Y. C. ; Liu, Jiuqiang ; Wang, Larry X. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-77bb9154d9d522e2ea82cc04615e7dfba0435928882e4c87bf2dd1ed602d09143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clusters</topic><topic>Equality</topic><topic>Mathematical analysis</topic><topic>Stars</topic><topic>Theorems</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Liu, Jiuqiang</creatorcontrib><creatorcontrib>Wang, Larry X. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y. C.</au><au>Liu, Jiuqiang</au><au>Wang, Larry X. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Families of Sets with Intersecting Clusters</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>23</volume><issue>3</issue><spage>1249</spage><epage>1260</epage><pages>1249-1260</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>A family of $k$-subsets $A_1,A_2,\ldots,A_d$ on $[n]=\{1,2,\ldots,n\}$ is called a $(d,c)$-cluster if the union $A_1\cup A_2 \cup\cdots\cup A_d$ contains at most $ck$ elements with $c<d$. Let $\mathcal{F}$ be a family of $k$-subsets of an $n$-element set. We show that for $k\geq2$ and $n\geq k+2$, if every $(k,2)$-cluster of $\mathcal{F}$ is intersecting, then $\mathcal{F}$ contains no $(k-1)$-dimensional simplices. This leads to an affirmative answer to Mubayi's conjecture for $d=k$ based on Chvátal's simplex theorem. We also show that for any $d$ satisfying $3\leq d\leq k$ and $n\geq\frac{dk}{d-1}$, if every $(d,\frac{d+1}{2})$-cluster is intersecting, then $|\mathcal{F}|\leq{n-1\choose k-1}$ with equality only when $\mathcal{F}$ is a complete star. This result is an extension of both Frankl's theorem and Mubayi's theorem.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080721662</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2009-01, Vol.23 (3), p.1249-1260 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038248086 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Clusters Equality Mathematical analysis Stars Theorems Unions |
title | Families of Sets with Intersecting Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Families%20of%20Sets%20with%20Intersecting%20Clusters&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=Chen,%20William%20Y.%20C.&rft.date=2009-01-01&rft.volume=23&rft.issue=3&rft.spage=1249&rft.epage=1260&rft.pages=1249-1260&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/080721662&rft_dat=%3Cproquest_cross%3E2599493511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925634774&rft_id=info:pmid/&rfr_iscdi=true |