Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates
Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucl...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2012-07, Vol.350 (1), p.38-43 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Journal of crystal growth |
container_volume | 350 |
creator | Fujikura, Hajime Oshima, Yuichi Megro, Takeshi Saito, Toshiya |
description | Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2. |
doi_str_mv | 10.1016/j.jcrysgro.2011.12.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038246925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024811010384</els_id><sourcerecordid>1038246925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</originalsourceid><addsrcrecordid>eNqFkEFP3DAQha2qSN1C_0LlS6VeEmzH8Sa3VoiylRBwAK6WM56svMra1JMF7b-vt0u5cvH48N68Nx9jX6WopZDmfFNvIO9pnVOthJS1VLWQ_Qe2kN2yqVoh1Ee2KK-qhNLdJ_aZaCNEcUqxYLBy2Uck4pDinNPEx5R52D7l9IxbjDNPI_eBpgRuDinyjH4H_34h8tXj3WVVgl8iHzMizS76ENf8yt1w2g00ZzcjnbGT0U2EX17nKXv4dXl_saqub69-X_y8rkBrOVdL33TCedmjB_CmaXXXDVqpzsDQNiDBOzNIvey1AQVqqUzndK_7AUZQZpTNKft-3FvK_9mVNnYbCHCaXMS0IytF0yltetUWqTlKISeijKN9ymHr8r6I7IGq3dj_VO2BqpXKFqrF-O01wxG4acwuQqA3tzJCtL0-dPlx1GE5-DlgtgQBI6APGWG2PoX3ov4CvCaSqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038246925</pqid></control><display><type>article</type><title>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</title><source>Elsevier ScienceDirect Journals</source><creator>Fujikura, Hajime ; Oshima, Yuichi ; Megro, Takeshi ; Saito, Toshiya</creator><creatorcontrib>Fujikura, Hajime ; Oshima, Yuichi ; Megro, Takeshi ; Saito, Toshiya</creatorcontrib><description>Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2011.12.019</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Characterization ; A1. Defects ; A2. Growth from vapor ; A3. Hydride vapor phase epitaxy ; B1. Nitride ; B2. Semiconducting gallium compounds ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystals ; Defects and impurities in crystals; microstructure ; Density ; Dislocations ; Exact sciences and technology ; Gallium nitrides ; Hardness ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanomaterials ; Nanostructure ; Physics ; Reduction ; Structure and morphology; thickness ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Thin film structure and morphology ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2012-07, Vol.350 (1), p.38-43</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</citedby><cites>FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024811010384$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26005941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujikura, Hajime</creatorcontrib><creatorcontrib>Oshima, Yuichi</creatorcontrib><creatorcontrib>Megro, Takeshi</creatorcontrib><creatorcontrib>Saito, Toshiya</creatorcontrib><title>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</title><title>Journal of crystal growth</title><description>Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.</description><subject>A1. Characterization</subject><subject>A1. Defects</subject><subject>A2. Growth from vapor</subject><subject>A3. Hydride vapor phase epitaxy</subject><subject>B1. Nitride</subject><subject>B2. Semiconducting gallium compounds</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystals</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Density</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Gallium nitrides</subject><subject>Hardness</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Reduction</subject><subject>Structure and morphology; thickness</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Thin film structure and morphology</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQha2qSN1C_0LlS6VeEmzH8Sa3VoiylRBwAK6WM56svMra1JMF7b-vt0u5cvH48N68Nx9jX6WopZDmfFNvIO9pnVOthJS1VLWQ_Qe2kN2yqVoh1Ee2KK-qhNLdJ_aZaCNEcUqxYLBy2Uck4pDinNPEx5R52D7l9IxbjDNPI_eBpgRuDinyjH4H_34h8tXj3WVVgl8iHzMizS76ENf8yt1w2g00ZzcjnbGT0U2EX17nKXv4dXl_saqub69-X_y8rkBrOVdL33TCedmjB_CmaXXXDVqpzsDQNiDBOzNIvey1AQVqqUzndK_7AUZQZpTNKft-3FvK_9mVNnYbCHCaXMS0IytF0yltetUWqTlKISeijKN9ymHr8r6I7IGq3dj_VO2BqpXKFqrF-O01wxG4acwuQqA3tzJCtL0-dPlx1GE5-DlgtgQBI6APGWG2PoX3ov4CvCaSqg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Fujikura, Hajime</creator><creator>Oshima, Yuichi</creator><creator>Megro, Takeshi</creator><creator>Saito, Toshiya</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</title><author>Fujikura, Hajime ; Oshima, Yuichi ; Megro, Takeshi ; Saito, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A1. Characterization</topic><topic>A1. Defects</topic><topic>A2. Growth from vapor</topic><topic>A3. Hydride vapor phase epitaxy</topic><topic>B1. Nitride</topic><topic>B2. Semiconducting gallium compounds</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystals</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Density</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Gallium nitrides</topic><topic>Hardness</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Reduction</topic><topic>Structure and morphology; thickness</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Thin film structure and morphology</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujikura, Hajime</creatorcontrib><creatorcontrib>Oshima, Yuichi</creatorcontrib><creatorcontrib>Megro, Takeshi</creatorcontrib><creatorcontrib>Saito, Toshiya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujikura, Hajime</au><au>Oshima, Yuichi</au><au>Megro, Takeshi</au><au>Saito, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</atitle><jtitle>Journal of crystal growth</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>350</volume><issue>1</issue><spage>38</spage><epage>43</epage><pages>38-43</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2011.12.019</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2012-07, Vol.350 (1), p.38-43 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038246925 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Characterization A1. Defects A2. Growth from vapor A3. Hydride vapor phase epitaxy B1. Nitride B2. Semiconducting gallium compounds Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystals Defects and impurities in crystals microstructure Density Dislocations Exact sciences and technology Gallium nitrides Hardness Linear defects: dislocations, disclinations Materials science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Nanomaterials Nanostructure Physics Reduction Structure and morphology thickness Structure of solids and liquids crystallography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Thin film structure and morphology Vapor phase epitaxy growth from vapor phase |
title | Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20control%20for%20improvement%20of%20dislocation%20reduction%20in%20HVPE-grown%20freestanding%20GaN%20substrates&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Fujikura,%20Hajime&rft.date=2012-07-01&rft.volume=350&rft.issue=1&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2011.12.019&rft_dat=%3Cproquest_cross%3E1038246925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038246925&rft_id=info:pmid/&rft_els_id=S0022024811010384&rfr_iscdi=true |