Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates

Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2012-07, Vol.350 (1), p.38-43
Hauptverfasser: Fujikura, Hajime, Oshima, Yuichi, Megro, Takeshi, Saito, Toshiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 38
container_title Journal of crystal growth
container_volume 350
creator Fujikura, Hajime
Oshima, Yuichi
Megro, Takeshi
Saito, Toshiya
description Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.
doi_str_mv 10.1016/j.jcrysgro.2011.12.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038246925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024811010384</els_id><sourcerecordid>1038246925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</originalsourceid><addsrcrecordid>eNqFkEFP3DAQha2qSN1C_0LlS6VeEmzH8Sa3VoiylRBwAK6WM56svMra1JMF7b-vt0u5cvH48N68Nx9jX6WopZDmfFNvIO9pnVOthJS1VLWQ_Qe2kN2yqVoh1Ee2KK-qhNLdJ_aZaCNEcUqxYLBy2Uck4pDinNPEx5R52D7l9IxbjDNPI_eBpgRuDinyjH4H_34h8tXj3WVVgl8iHzMizS76ENf8yt1w2g00ZzcjnbGT0U2EX17nKXv4dXl_saqub69-X_y8rkBrOVdL33TCedmjB_CmaXXXDVqpzsDQNiDBOzNIvey1AQVqqUzndK_7AUZQZpTNKft-3FvK_9mVNnYbCHCaXMS0IytF0yltetUWqTlKISeijKN9ymHr8r6I7IGq3dj_VO2BqpXKFqrF-O01wxG4acwuQqA3tzJCtL0-dPlx1GE5-DlgtgQBI6APGWG2PoX3ov4CvCaSqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038246925</pqid></control><display><type>article</type><title>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</title><source>Elsevier ScienceDirect Journals</source><creator>Fujikura, Hajime ; Oshima, Yuichi ; Megro, Takeshi ; Saito, Toshiya</creator><creatorcontrib>Fujikura, Hajime ; Oshima, Yuichi ; Megro, Takeshi ; Saito, Toshiya</creatorcontrib><description>Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2011.12.019</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Characterization ; A1. Defects ; A2. Growth from vapor ; A3. Hydride vapor phase epitaxy ; B1. Nitride ; B2. Semiconducting gallium compounds ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystals ; Defects and impurities in crystals; microstructure ; Density ; Dislocations ; Exact sciences and technology ; Gallium nitrides ; Hardness ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanomaterials ; Nanostructure ; Physics ; Reduction ; Structure and morphology; thickness ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Thin film structure and morphology ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2012-07, Vol.350 (1), p.38-43</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</citedby><cites>FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024811010384$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26005941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujikura, Hajime</creatorcontrib><creatorcontrib>Oshima, Yuichi</creatorcontrib><creatorcontrib>Megro, Takeshi</creatorcontrib><creatorcontrib>Saito, Toshiya</creatorcontrib><title>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</title><title>Journal of crystal growth</title><description>Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.</description><subject>A1. Characterization</subject><subject>A1. Defects</subject><subject>A2. Growth from vapor</subject><subject>A3. Hydride vapor phase epitaxy</subject><subject>B1. Nitride</subject><subject>B2. Semiconducting gallium compounds</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystals</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Density</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Gallium nitrides</subject><subject>Hardness</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Reduction</subject><subject>Structure and morphology; thickness</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Thin film structure and morphology</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQha2qSN1C_0LlS6VeEmzH8Sa3VoiylRBwAK6WM56svMra1JMF7b-vt0u5cvH48N68Nx9jX6WopZDmfFNvIO9pnVOthJS1VLWQ_Qe2kN2yqVoh1Ee2KK-qhNLdJ_aZaCNEcUqxYLBy2Uck4pDinNPEx5R52D7l9IxbjDNPI_eBpgRuDinyjH4H_34h8tXj3WVVgl8iHzMizS76ENf8yt1w2g00ZzcjnbGT0U2EX17nKXv4dXl_saqub69-X_y8rkBrOVdL33TCedmjB_CmaXXXDVqpzsDQNiDBOzNIvey1AQVqqUzndK_7AUZQZpTNKft-3FvK_9mVNnYbCHCaXMS0IytF0yltetUWqTlKISeijKN9ymHr8r6I7IGq3dj_VO2BqpXKFqrF-O01wxG4acwuQqA3tzJCtL0-dPlx1GE5-DlgtgQBI6APGWG2PoX3ov4CvCaSqg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Fujikura, Hajime</creator><creator>Oshima, Yuichi</creator><creator>Megro, Takeshi</creator><creator>Saito, Toshiya</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</title><author>Fujikura, Hajime ; Oshima, Yuichi ; Megro, Takeshi ; Saito, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7d380ad19edccd635488b42286cb53c1cda6b147946c2c27268a4949bcfc26f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A1. Characterization</topic><topic>A1. Defects</topic><topic>A2. Growth from vapor</topic><topic>A3. Hydride vapor phase epitaxy</topic><topic>B1. Nitride</topic><topic>B2. Semiconducting gallium compounds</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystals</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Density</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Gallium nitrides</topic><topic>Hardness</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Reduction</topic><topic>Structure and morphology; thickness</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Thin film structure and morphology</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujikura, Hajime</creatorcontrib><creatorcontrib>Oshima, Yuichi</creatorcontrib><creatorcontrib>Megro, Takeshi</creatorcontrib><creatorcontrib>Saito, Toshiya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujikura, Hajime</au><au>Oshima, Yuichi</au><au>Megro, Takeshi</au><au>Saito, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates</atitle><jtitle>Journal of crystal growth</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>350</volume><issue>1</issue><spage>38</spage><epage>43</epage><pages>38-43</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Nano-indentation measurements on freestanding GaN substrates clearly showed, for the first time, that the hardness of the GaN crystal can be controlled by changing the growth conditions for hydride vapor phase epitaxy (HVPE). The hardness of the GaN crystal is probably governed by heterogeneous nucleation of dislocations through a nitrogen vacancy-related mechanism. The observed changes in the nano-indentation hardness can be explained in terms of the dependence on growth condition of the concentration of nitrogen vacancies in the GaN crystal. This control of the crystal hardness has a significant effect on the dislocation-reducing process during the HVPE-growth of freestanding GaN substrates. According to the theory, the threading dislocation density (TDD) should decrease continuously with increasing growth thickness. However, as a result of the accumulation of growth-induced stress, the reduction of TDD for a freestanding GaN substrate with a less-hard crystal stopped at a certain critical thickness and became saturated at around the mid-106/cm2 range. This saturation behavior of TDDs can be overcome by making the GaN crystal harder by changing the HVPE conditions, giving freestanding GaN substrates with extremely low TDDs in the range 105/cm2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2011.12.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2012-07, Vol.350 (1), p.38-43
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1038246925
source Elsevier ScienceDirect Journals
subjects A1. Characterization
A1. Defects
A2. Growth from vapor
A3. Hydride vapor phase epitaxy
B1. Nitride
B2. Semiconducting gallium compounds
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystals
Defects and impurities in crystals
microstructure
Density
Dislocations
Exact sciences and technology
Gallium nitrides
Hardness
Linear defects: dislocations, disclinations
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Nanomaterials
Nanostructure
Physics
Reduction
Structure and morphology
thickness
Structure of solids and liquids
crystallography
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Thin film structure and morphology
Vapor phase epitaxy
growth from vapor phase
title Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20control%20for%20improvement%20of%20dislocation%20reduction%20in%20HVPE-grown%20freestanding%20GaN%20substrates&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Fujikura,%20Hajime&rft.date=2012-07-01&rft.volume=350&rft.issue=1&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2011.12.019&rft_dat=%3Cproquest_cross%3E1038246925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038246925&rft_id=info:pmid/&rft_els_id=S0022024811010384&rfr_iscdi=true