Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions

This Letter presents three-dimensional general solutions for static problems in thermo-elasticity of one-dimensional hexagonal quasi-crystals. Two displacement potentials are introduced to simplify the equilibrium equations in terms of displacement and temperature. Rigorous operator theory and gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2012-05, Vol.376 (26-27), p.2004-2009
Hauptverfasser: Li, X.Y., Li, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2009
container_issue 26-27
container_start_page 2004
container_title Physics letters. A
container_volume 376
creator Li, X.Y.
Li, P.D.
description This Letter presents three-dimensional general solutions for static problems in thermo-elasticity of one-dimensional hexagonal quasi-crystals. Two displacement potentials are introduced to simplify the equilibrium equations in terms of displacement and temperature. Rigorous operator theory and generalized Almansiʼs theorem are applied to derive the general solutions in terms of five quasi-harmonic functions. To show the significance of the general solutions, a semi-infinite space and an infinite space, both of which are subjected to a heat source, are considered. In these two cases, closed form fundamental phonon–phason-elastic fields are expressed by elementary functions, which play an important role in numerical simulations. ► We present 3D static thermo-elastic general solutions for 1D hexagonal QCs. ► Thermo-phonon–phason field is expressed by five quasi-harmonic functions. ► Fundamental solutions for semi-infinite and infinite spaces are derived.
doi_str_mv 10.1016/j.physleta.2012.04.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038246790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960112005221</els_id><sourcerecordid>1038246790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-19a1771943a37e7c851e957c37c2dd586838e90d73bf1dc35be0278a258277d73</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbpZsY8ZiaTnVJ8geCmrkOa3OmkTCdtklH7702tgq6EC_fBdw7cg9AlwQXBpL5eFZtuF3qIqqCY0AKXqcQRmpCGs5yWVByjCWa8ykWNySk6C2GFcVJiMUHv884D5MauYQjWDarPYgd-7XLoVYhWZ0sYwKdzcP0YExEy12Zu-Kvp4EMtv6btqILNtd-FmDY1mKwdB6MSGn-bnKOTVvUBLr77FL3e381nj_nzy8PT7PY516ysYk6EIpwTUTLFOHDdVARExTXjmhpTNXXDGhDYcLZoidGsWgCmvFG0aijn6TxFVwffjXfbEUKUaxs09L0awI1BEswaWtZc4ITWB1R7F4KHVm68XSu_S5DcJy1X8idpuU9a4jKVSMKbgxDSI28WvAzawqDBWA86SuPsfxafDy6N0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038246790</pqid></control><display><type>article</type><title>Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, X.Y. ; Li, P.D.</creator><creatorcontrib>Li, X.Y. ; Li, P.D.</creatorcontrib><description>This Letter presents three-dimensional general solutions for static problems in thermo-elasticity of one-dimensional hexagonal quasi-crystals. Two displacement potentials are introduced to simplify the equilibrium equations in terms of displacement and temperature. Rigorous operator theory and generalized Almansiʼs theorem are applied to derive the general solutions in terms of five quasi-harmonic functions. To show the significance of the general solutions, a semi-infinite space and an infinite space, both of which are subjected to a heat source, are considered. In these two cases, closed form fundamental phonon–phason-elastic fields are expressed by elementary functions, which play an important role in numerical simulations. ► We present 3D static thermo-elastic general solutions for 1D hexagonal QCs. ► Thermo-phonon–phason field is expressed by five quasi-harmonic functions. ► Fundamental solutions for semi-infinite and infinite spaces are derived.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2012.04.049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Displacement ; Exact solutions ; Fundamental solutions ; General solutions ; Heat sources ; Mathematical analysis ; Mathematical models ; One-dimensional hexagonal quasi-crystal ; Solid state physics ; Three dimensional ; Transverse isotropy</subject><ispartof>Physics letters. A, 2012-05, Vol.376 (26-27), p.2004-2009</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-19a1771943a37e7c851e957c37c2dd586838e90d73bf1dc35be0278a258277d73</citedby><cites>FETCH-LOGICAL-c345t-19a1771943a37e7c851e957c37c2dd586838e90d73bf1dc35be0278a258277d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2012.04.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Li, X.Y.</creatorcontrib><creatorcontrib>Li, P.D.</creatorcontrib><title>Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions</title><title>Physics letters. A</title><description>This Letter presents three-dimensional general solutions for static problems in thermo-elasticity of one-dimensional hexagonal quasi-crystals. Two displacement potentials are introduced to simplify the equilibrium equations in terms of displacement and temperature. Rigorous operator theory and generalized Almansiʼs theorem are applied to derive the general solutions in terms of five quasi-harmonic functions. To show the significance of the general solutions, a semi-infinite space and an infinite space, both of which are subjected to a heat source, are considered. In these two cases, closed form fundamental phonon–phason-elastic fields are expressed by elementary functions, which play an important role in numerical simulations. ► We present 3D static thermo-elastic general solutions for 1D hexagonal QCs. ► Thermo-phonon–phason field is expressed by five quasi-harmonic functions. ► Fundamental solutions for semi-infinite and infinite spaces are derived.</description><subject>Computer simulation</subject><subject>Displacement</subject><subject>Exact solutions</subject><subject>Fundamental solutions</subject><subject>General solutions</subject><subject>Heat sources</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>One-dimensional hexagonal quasi-crystal</subject><subject>Solid state physics</subject><subject>Three dimensional</subject><subject>Transverse isotropy</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbpZsY8ZiaTnVJ8geCmrkOa3OmkTCdtklH7702tgq6EC_fBdw7cg9AlwQXBpL5eFZtuF3qIqqCY0AKXqcQRmpCGs5yWVByjCWa8ykWNySk6C2GFcVJiMUHv884D5MauYQjWDarPYgd-7XLoVYhWZ0sYwKdzcP0YExEy12Zu-Kvp4EMtv6btqILNtd-FmDY1mKwdB6MSGn-bnKOTVvUBLr77FL3e381nj_nzy8PT7PY516ysYk6EIpwTUTLFOHDdVARExTXjmhpTNXXDGhDYcLZoidGsWgCmvFG0aijn6TxFVwffjXfbEUKUaxs09L0awI1BEswaWtZc4ITWB1R7F4KHVm68XSu_S5DcJy1X8idpuU9a4jKVSMKbgxDSI28WvAzawqDBWA86SuPsfxafDy6N0A</recordid><startdate>20120521</startdate><enddate>20120521</enddate><creator>Li, X.Y.</creator><creator>Li, P.D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120521</creationdate><title>Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions</title><author>Li, X.Y. ; Li, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-19a1771943a37e7c851e957c37c2dd586838e90d73bf1dc35be0278a258277d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer simulation</topic><topic>Displacement</topic><topic>Exact solutions</topic><topic>Fundamental solutions</topic><topic>General solutions</topic><topic>Heat sources</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>One-dimensional hexagonal quasi-crystal</topic><topic>Solid state physics</topic><topic>Three dimensional</topic><topic>Transverse isotropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.Y.</creatorcontrib><creatorcontrib>Li, P.D.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.Y.</au><au>Li, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions</atitle><jtitle>Physics letters. A</jtitle><date>2012-05-21</date><risdate>2012</risdate><volume>376</volume><issue>26-27</issue><spage>2004</spage><epage>2009</epage><pages>2004-2009</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>This Letter presents three-dimensional general solutions for static problems in thermo-elasticity of one-dimensional hexagonal quasi-crystals. Two displacement potentials are introduced to simplify the equilibrium equations in terms of displacement and temperature. Rigorous operator theory and generalized Almansiʼs theorem are applied to derive the general solutions in terms of five quasi-harmonic functions. To show the significance of the general solutions, a semi-infinite space and an infinite space, both of which are subjected to a heat source, are considered. In these two cases, closed form fundamental phonon–phason-elastic fields are expressed by elementary functions, which play an important role in numerical simulations. ► We present 3D static thermo-elastic general solutions for 1D hexagonal QCs. ► Thermo-phonon–phason field is expressed by five quasi-harmonic functions. ► Fundamental solutions for semi-infinite and infinite spaces are derived.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2012.04.049</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2012-05, Vol.376 (26-27), p.2004-2009
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1038246790
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Displacement
Exact solutions
Fundamental solutions
General solutions
Heat sources
Mathematical analysis
Mathematical models
One-dimensional hexagonal quasi-crystal
Solid state physics
Three dimensional
Transverse isotropy
title Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20thermo-elastic%20general%20solutions%20of%20one-dimensional%20hexagonal%20quasi-crystal%20and%20fundamental%20solutions&rft.jtitle=Physics%20letters.%20A&rft.au=Li,%20X.Y.&rft.date=2012-05-21&rft.volume=376&rft.issue=26-27&rft.spage=2004&rft.epage=2009&rft.pages=2004-2009&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2012.04.049&rft_dat=%3Cproquest_cross%3E1038246790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038246790&rft_id=info:pmid/&rft_els_id=S0375960112005221&rfr_iscdi=true