Applications of a Confocal Scanning Laser Holography (CSLH) instrument for measuring the three-dimensional temperature of a fluid and transparent objects

► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2012-07, Vol.55 (15-16), p.4020-4028
Hauptverfasser: Jacquemin, Peter B., Herring, Rodney A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4028
container_issue 15-16
container_start_page 4020
container_title International journal of heat and mass transfer
container_volume 55
creator Jacquemin, Peter B.
Herring, Rodney A.
description ► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary conditions. The Confocal Scanning Laser Holography (CSLH) microscope was designed to measure the temperature distribution of a fluid in three dimensions using a focused laser beam. The laser beam passes through the specimen and is interfered with a reference beam to form a hologram. The minute changes in refractive index produce fringe-shifts in a hologram. The fringe-shifts are converted to temperature, pressure, or composition depending on the configuration. A tomographic reconstruction algorithm, which is based on the numerical aperture of the beam, was derived for the microscope. Narrow field angle scanning is restricted to the numerical aperture or cone angle of the laser beam probing the specimen which increases the error in determining the three-dimensional properties of a specimen. The holography aspect of the microscope preserves the phase of the object which provides a temperature sensitivity of 0.1°C based on a λ/10 wave fringe shift resolution in the hologram. The reconstructed temperature resolution is 1°C in three-dimensions by processing the experiment data. The CSLH concept and tomographic reconstruction method of hologram data can be applied to precise non-invasive measurement of displacement, temperature, pressure, and composition of thick regions with positional resolution near the wavelength of the laser beam. Micro-fluidics and other areas of research and applied technology may well consider the unique measurement benefits of the CSLH device.
doi_str_mv 10.1016/j.ijheatmasstransfer.2012.03.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038246499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931012001883</els_id><sourcerecordid>1038246499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-95c1b8c72cada1eed8937257a9fbf8e31cfb7287148f63ba080dd25a7a1920c93</originalsourceid><addsrcrecordid>eNqNkc-O0zAQxiMEEmXhHXxBKocU_0ma-MaqYimoEoeFczRxxltXiR08DtI-Cm-LQ1dcuCCNZY38-fdp5iuKreA7wcX-_WXnLmeENAFRiuDJYtxJLuSOq1z6WbERbaNLKVr9vNhwLppSK8FfFq-ILmvLq_2m-HU7z6MzkFzwxIJlwA7B22BgZPcGvHf-gZ2AMLJjGMNDhPn8yLaH-9PxHXM-Wy8T-sRsiGxCoCWuH9IZ84mI5eDyM2V45iWcZoyQlohXJzsubmDgB_Znghniigr9BU2i18ULCyPhm6f7pvh-9_Hb4Vievn76fLg9lUZVMpW6NqJvTSMNDCAQh1arRtYNaNvbFpUwtm9k24iqtXvVA2_5MMgaGhBacqPVTbG9cucYfixIqZscGRxH8BgW6gRXraz2lV6lH65SEwNRRNvN0U0QH7OoW1PpLt2_qXRrKh1XuVbE2yc3oLxjmzXG0V-OrHVdS9Vk3ZerDvPoP12mkHHoDQ4u5u10Q3D_b_obrdSzIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038246499</pqid></control><display><type>article</type><title>Applications of a Confocal Scanning Laser Holography (CSLH) instrument for measuring the three-dimensional temperature of a fluid and transparent objects</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jacquemin, Peter B. ; Herring, Rodney A.</creator><creatorcontrib>Jacquemin, Peter B. ; Herring, Rodney A.</creatorcontrib><description>► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary conditions. The Confocal Scanning Laser Holography (CSLH) microscope was designed to measure the temperature distribution of a fluid in three dimensions using a focused laser beam. The laser beam passes through the specimen and is interfered with a reference beam to form a hologram. The minute changes in refractive index produce fringe-shifts in a hologram. The fringe-shifts are converted to temperature, pressure, or composition depending on the configuration. A tomographic reconstruction algorithm, which is based on the numerical aperture of the beam, was derived for the microscope. Narrow field angle scanning is restricted to the numerical aperture or cone angle of the laser beam probing the specimen which increases the error in determining the three-dimensional properties of a specimen. The holography aspect of the microscope preserves the phase of the object which provides a temperature sensitivity of 0.1°C based on a λ/10 wave fringe shift resolution in the hologram. The reconstructed temperature resolution is 1°C in three-dimensions by processing the experiment data. The CSLH concept and tomographic reconstruction method of hologram data can be applied to precise non-invasive measurement of displacement, temperature, pressure, and composition of thick regions with positional resolution near the wavelength of the laser beam. Micro-fluidics and other areas of research and applied technology may well consider the unique measurement benefits of the CSLH device.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2012.03.039</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Beams (radiation) ; Biological and medical applications ; Confocal ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Holograms ; Holography ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Laser ; Laser beams ; Metrological applications ; Microscope ; Microscopes ; Optics ; Physics ; Reconstruction ; Scanning ; Thermal instruments, apparatus and techniques ; Thermometry ; Three dimensional</subject><ispartof>International journal of heat and mass transfer, 2012-07, Vol.55 (15-16), p.4020-4028</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-95c1b8c72cada1eed8937257a9fbf8e31cfb7287148f63ba080dd25a7a1920c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25955237$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacquemin, Peter B.</creatorcontrib><creatorcontrib>Herring, Rodney A.</creatorcontrib><title>Applications of a Confocal Scanning Laser Holography (CSLH) instrument for measuring the three-dimensional temperature of a fluid and transparent objects</title><title>International journal of heat and mass transfer</title><description>► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary conditions. The Confocal Scanning Laser Holography (CSLH) microscope was designed to measure the temperature distribution of a fluid in three dimensions using a focused laser beam. The laser beam passes through the specimen and is interfered with a reference beam to form a hologram. The minute changes in refractive index produce fringe-shifts in a hologram. The fringe-shifts are converted to temperature, pressure, or composition depending on the configuration. A tomographic reconstruction algorithm, which is based on the numerical aperture of the beam, was derived for the microscope. Narrow field angle scanning is restricted to the numerical aperture or cone angle of the laser beam probing the specimen which increases the error in determining the three-dimensional properties of a specimen. The holography aspect of the microscope preserves the phase of the object which provides a temperature sensitivity of 0.1°C based on a λ/10 wave fringe shift resolution in the hologram. The reconstructed temperature resolution is 1°C in three-dimensions by processing the experiment data. The CSLH concept and tomographic reconstruction method of hologram data can be applied to precise non-invasive measurement of displacement, temperature, pressure, and composition of thick regions with positional resolution near the wavelength of the laser beam. Micro-fluidics and other areas of research and applied technology may well consider the unique measurement benefits of the CSLH device.</description><subject>Beams (radiation)</subject><subject>Biological and medical applications</subject><subject>Confocal</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Holograms</subject><subject>Holography</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Laser</subject><subject>Laser beams</subject><subject>Metrological applications</subject><subject>Microscope</subject><subject>Microscopes</subject><subject>Optics</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Scanning</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thermometry</subject><subject>Three dimensional</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkc-O0zAQxiMEEmXhHXxBKocU_0ma-MaqYimoEoeFczRxxltXiR08DtI-Cm-LQ1dcuCCNZY38-fdp5iuKreA7wcX-_WXnLmeENAFRiuDJYtxJLuSOq1z6WbERbaNLKVr9vNhwLppSK8FfFq-ILmvLq_2m-HU7z6MzkFzwxIJlwA7B22BgZPcGvHf-gZ2AMLJjGMNDhPn8yLaH-9PxHXM-Wy8T-sRsiGxCoCWuH9IZ84mI5eDyM2V45iWcZoyQlohXJzsubmDgB_Znghniigr9BU2i18ULCyPhm6f7pvh-9_Hb4Vievn76fLg9lUZVMpW6NqJvTSMNDCAQh1arRtYNaNvbFpUwtm9k24iqtXvVA2_5MMgaGhBacqPVTbG9cucYfixIqZscGRxH8BgW6gRXraz2lV6lH65SEwNRRNvN0U0QH7OoW1PpLt2_qXRrKh1XuVbE2yc3oLxjmzXG0V-OrHVdS9Vk3ZerDvPoP12mkHHoDQ4u5u10Q3D_b_obrdSzIg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Jacquemin, Peter B.</creator><creator>Herring, Rodney A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Applications of a Confocal Scanning Laser Holography (CSLH) instrument for measuring the three-dimensional temperature of a fluid and transparent objects</title><author>Jacquemin, Peter B. ; Herring, Rodney A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-95c1b8c72cada1eed8937257a9fbf8e31cfb7287148f63ba080dd25a7a1920c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Beams (radiation)</topic><topic>Biological and medical applications</topic><topic>Confocal</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Holograms</topic><topic>Holography</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Laser</topic><topic>Laser beams</topic><topic>Metrological applications</topic><topic>Microscope</topic><topic>Microscopes</topic><topic>Optics</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Scanning</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thermometry</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquemin, Peter B.</creatorcontrib><creatorcontrib>Herring, Rodney A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacquemin, Peter B.</au><au>Herring, Rodney A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of a Confocal Scanning Laser Holography (CSLH) instrument for measuring the three-dimensional temperature of a fluid and transparent objects</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>55</volume><issue>15-16</issue><spage>4020</spage><epage>4028</epage><pages>4020-4028</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary conditions. The Confocal Scanning Laser Holography (CSLH) microscope was designed to measure the temperature distribution of a fluid in three dimensions using a focused laser beam. The laser beam passes through the specimen and is interfered with a reference beam to form a hologram. The minute changes in refractive index produce fringe-shifts in a hologram. The fringe-shifts are converted to temperature, pressure, or composition depending on the configuration. A tomographic reconstruction algorithm, which is based on the numerical aperture of the beam, was derived for the microscope. Narrow field angle scanning is restricted to the numerical aperture or cone angle of the laser beam probing the specimen which increases the error in determining the three-dimensional properties of a specimen. The holography aspect of the microscope preserves the phase of the object which provides a temperature sensitivity of 0.1°C based on a λ/10 wave fringe shift resolution in the hologram. The reconstructed temperature resolution is 1°C in three-dimensions by processing the experiment data. The CSLH concept and tomographic reconstruction method of hologram data can be applied to precise non-invasive measurement of displacement, temperature, pressure, and composition of thick regions with positional resolution near the wavelength of the laser beam. Micro-fluidics and other areas of research and applied technology may well consider the unique measurement benefits of the CSLH device.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2012.03.039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2012-07, Vol.55 (15-16), p.4020-4028
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1038246499
source ScienceDirect Journals (5 years ago - present)
subjects Beams (radiation)
Biological and medical applications
Confocal
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Holograms
Holography
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Laser
Laser beams
Metrological applications
Microscope
Microscopes
Optics
Physics
Reconstruction
Scanning
Thermal instruments, apparatus and techniques
Thermometry
Three dimensional
title Applications of a Confocal Scanning Laser Holography (CSLH) instrument for measuring the three-dimensional temperature of a fluid and transparent objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20a%20Confocal%20Scanning%20Laser%20Holography%20(CSLH)%20instrument%20for%20measuring%20the%20three-dimensional%20temperature%20of%20a%20fluid%20and%20transparent%20objects&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Jacquemin,%20Peter%20B.&rft.date=2012-07-01&rft.volume=55&rft.issue=15-16&rft.spage=4020&rft.epage=4028&rft.pages=4020-4028&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2012.03.039&rft_dat=%3Cproquest_cross%3E1038246499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038246499&rft_id=info:pmid/&rft_els_id=S0017931012001883&rfr_iscdi=true