A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems

This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2012-06, Vol.231 (16), p.5469-5488
Hauptverfasser: Cruz, A.G.B., Dutra do Carmo, E.G., Duda, F.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5488
container_issue 16
container_start_page 5469
container_title Journal of computational physics
container_volume 231
creator Cruz, A.G.B.
Dutra do Carmo, E.G.
Duda, F.P.
description This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.
doi_str_mv 10.1016/j.jcp.2012.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038245967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112002264</els_id><sourcerecordid>1038245967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7814168fe0e46d2a05c1df9e6e93a3b95c5681b671611320961f591c6e0125093</originalsourceid><addsrcrecordid>eNp9kMFuHCEMhlGVSt1s-wC9canUy0zsmYEd1FMUNWmkSL0kZ8SCR2E7A1tgE7VPH1YbNbcekDH-bfN_jH1GaBFQXuzand23HWDXgmgBundshaCg6TYoz9iqvmCjlMIP7DznHQCMYhhXLF1yG0P2uVAo3ATHczFbP_u_5I6V4sMhHvKF8_kt4zdmpvTLB75QeYyOTzHVc0jlsYnJUeI-2LjsE-XstzPxaY7PfJ9ivS_5I3s_mTnTp9e4Zg_X3--vfjR3P29ury7vGjtAX5rNiAPKcSKgQbrOgLDoJkWSVG_6rRJWyBG3svpD7DtQEieh0EqqEASofs2-nubWxb8PlIteqgmaZxOomtAI_dgNQslNleJJalPMOdGk98kvJv2pIn3kq3e68tVHvhqErjRrz5fX8SZbM0_JBOvzv8ZOQg-q_mzNvp10VL0-eUo6W0_BkvOJbNEu-v9seQH-DJGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038245967</pqid></control><display><type>article</type><title>A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems</title><source>Elsevier ScienceDirect Journals</source><creator>Cruz, A.G.B. ; Dutra do Carmo, E.G. ; Duda, F.P.</creator><creatorcontrib>Cruz, A.G.B. ; Dutra do Carmo, E.G. ; Duda, F.P.</creatorcontrib><description>This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.05.002</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computational fluid dynamics ; Computational techniques ; Discontinuous Galerkin methods ; Exact sciences and technology ; Finite element method ; Fluid flow ; Fourth-order problems ; Galerkin methods ; GLS stability ; Incompressible flow ; Interpolation ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; Second gradient</subject><ispartof>Journal of computational physics, 2012-06, Vol.231 (16), p.5469-5488</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-7814168fe0e46d2a05c1df9e6e93a3b95c5681b671611320961f591c6e0125093</citedby><cites>FETCH-LOGICAL-c403t-7814168fe0e46d2a05c1df9e6e93a3b95c5681b671611320961f591c6e0125093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999112002264$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26030911$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz, A.G.B.</creatorcontrib><creatorcontrib>Dutra do Carmo, E.G.</creatorcontrib><creatorcontrib>Duda, F.P.</creatorcontrib><title>A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems</title><title>Journal of computational physics</title><description>This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.</description><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Discontinuous Galerkin methods</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fourth-order problems</subject><subject>Galerkin methods</subject><subject>GLS stability</subject><subject>Incompressible flow</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Second gradient</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuHCEMhlGVSt1s-wC9canUy0zsmYEd1FMUNWmkSL0kZ8SCR2E7A1tgE7VPH1YbNbcekDH-bfN_jH1GaBFQXuzand23HWDXgmgBundshaCg6TYoz9iqvmCjlMIP7DznHQCMYhhXLF1yG0P2uVAo3ATHczFbP_u_5I6V4sMhHvKF8_kt4zdmpvTLB75QeYyOTzHVc0jlsYnJUeI-2LjsE-XstzPxaY7PfJ9ivS_5I3s_mTnTp9e4Zg_X3--vfjR3P29ury7vGjtAX5rNiAPKcSKgQbrOgLDoJkWSVG_6rRJWyBG3svpD7DtQEieh0EqqEASofs2-nubWxb8PlIteqgmaZxOomtAI_dgNQslNleJJalPMOdGk98kvJv2pIn3kq3e68tVHvhqErjRrz5fX8SZbM0_JBOvzv8ZOQg-q_mzNvp10VL0-eUo6W0_BkvOJbNEu-v9seQH-DJGE</recordid><startdate>20120620</startdate><enddate>20120620</enddate><creator>Cruz, A.G.B.</creator><creator>Dutra do Carmo, E.G.</creator><creator>Duda, F.P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120620</creationdate><title>A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems</title><author>Cruz, A.G.B. ; Dutra do Carmo, E.G. ; Duda, F.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7814168fe0e46d2a05c1df9e6e93a3b95c5681b671611320961f591c6e0125093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Discontinuous Galerkin methods</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fourth-order problems</topic><topic>Galerkin methods</topic><topic>GLS stability</topic><topic>Incompressible flow</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Second gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, A.G.B.</creatorcontrib><creatorcontrib>Dutra do Carmo, E.G.</creatorcontrib><creatorcontrib>Duda, F.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, A.G.B.</au><au>Dutra do Carmo, E.G.</au><au>Duda, F.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems</atitle><jtitle>Journal of computational physics</jtitle><date>2012-06-20</date><risdate>2012</risdate><volume>231</volume><issue>16</issue><spage>5469</spage><epage>5488</epage><pages>5469-5488</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.05.002</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2012-06, Vol.231 (16), p.5469-5488
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1038245967
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Computational techniques
Discontinuous Galerkin methods
Exact sciences and technology
Finite element method
Fluid flow
Fourth-order problems
Galerkin methods
GLS stability
Incompressible flow
Interpolation
Mathematical analysis
Mathematical methods in physics
Mathematical models
Physics
Second gradient
title A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consistent%20and%20stabilized%20continuous/discontinuous%20Galerkin%20method%20for%20fourth-order%20incompressible%20flow%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cruz,%20A.G.B.&rft.date=2012-06-20&rft.volume=231&rft.issue=16&rft.spage=5469&rft.epage=5488&rft.pages=5469-5488&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.05.002&rft_dat=%3Cproquest_cross%3E1038245967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038245967&rft_id=info:pmid/&rft_els_id=S0021999112002264&rfr_iscdi=true