Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway

[Display omitted] ► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2012-07, Vol.377 (1), p.269-276
Hauptverfasser: Gupta, K., Bhattacharya, S., Nandi, D., Dhar, A., Maity, A., Mukhopadhyay, A., Chattopadhyay, D.J., Ray, N.R., Sen, P., Ghosh, U.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 1
container_start_page 269
container_title Journal of colloid and interface science
container_volume 377
creator Gupta, K.
Bhattacharya, S.
Nandi, D.
Dhar, A.
Maity, A.
Mukhopadhyay, A.
Chattopadhyay, D.J.
Ray, N.R.
Sen, P.
Ghosh, U.C.
description [Display omitted] ► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process. Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.
doi_str_mv 10.1016/j.jcis.2012.01.066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038245638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979712003189</els_id><sourcerecordid>1038245638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</originalsourceid><addsrcrecordid>eNqN0c2O0zAQAOAIgdiy8AIcwBek7iHBjmO7Rlyqip9KC3uAPVuuM2lcNXbXdtjtmRfHUcseEZKlkaxvZuyZonhNcEUw4e931c7YWNWY1BUmFeb8STEjWLJSEEyfFjOMa1JKIcVF8SLGHcaEMCafFxd1zQiTks6K38sQwVkzX6_XVyj6cEjWO5SP087HFEaTxgAtMhDsOCDrTDY-6JTvBu222kEE5B9sC2j-ffXt5uoDWqJDf4zW6H320W77lGPyKPWABjC9djYma9BBp_5eH18Wzzq9j_DqHC-L28-ffq6-ltc3X9ar5XVpmoamklFKJGZiQboNbTcG08a0kjJG2kZwrpkxHWxq1kjNQOIGMAPGORcEsDY1pZfF_FT3EPzdCDGpwUYD-33-gx-jykNb1A3jdPEflFDBBW8mWp-oCT7GAJ06BDvocMxoclzt1LQnNe1JYaLynnLSm3P9cTNA-5jydzEZvDsDHfMcu6DdVOPR8VxYUJbd25PrtFd6G7K5_ZE7cYyxEJxOrT6eBOTR_rIQVDQWnIHWBjBJtd7-66V_ABm3uhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013767648</pqid></control><display><type>article</type><title>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gupta, K. ; Bhattacharya, S. ; Nandi, D. ; Dhar, A. ; Maity, A. ; Mukhopadhyay, A. ; Chattopadhyay, D.J. ; Ray, N.R. ; Sen, P. ; Ghosh, U.C.</creator><creatorcontrib>Gupta, K. ; Bhattacharya, S. ; Nandi, D. ; Dhar, A. ; Maity, A. ; Mukhopadhyay, A. ; Chattopadhyay, D.J. ; Ray, N.R. ; Sen, P. ; Ghosh, U.C.</creatorcontrib><description>[Display omitted] ► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process. Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2012.01.066</identifier><identifier>PMID: 22515993</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adsorption ; Arsenic ; Arsenic - chemistry ; Arsenic(III) ; Ceria supported hydrous manganese oxide ; cerium ; Cerium - chemistry ; Cerium oxide ; Chemistry ; Chemistry, Physical ; Colloidal state and disperse state ; desorption ; energy ; Entropy ; equations ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; General and physical chemistry ; Hydrogen-Ion Concentration ; ion exchange ; Isotherms ; Kinetics ; Manganese Compounds - chemistry ; manganese oxides ; Mathematical models ; Nanoparticle ; Nanostructure ; Nanostructures - chemistry ; Oxides - chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Removal ; Sorption ; sorption isotherms ; Surface physical chemistry ; Thermodynamics</subject><ispartof>Journal of colloid and interface science, 2012-07, Vol.377 (1), p.269-276</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</citedby><cites>FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2012.01.066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26016735$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22515993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, K.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Nandi, D.</creatorcontrib><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Maity, A.</creatorcontrib><creatorcontrib>Mukhopadhyay, A.</creatorcontrib><creatorcontrib>Chattopadhyay, D.J.</creatorcontrib><creatorcontrib>Ray, N.R.</creatorcontrib><creatorcontrib>Sen, P.</creatorcontrib><creatorcontrib>Ghosh, U.C.</creatorcontrib><title>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] ► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process. Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.</description><subject>Adsorption</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Arsenic(III)</subject><subject>Ceria supported hydrous manganese oxide</subject><subject>cerium</subject><subject>Cerium - chemistry</subject><subject>Cerium oxide</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Colloidal state and disperse state</subject><subject>desorption</subject><subject>energy</subject><subject>Entropy</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>General and physical chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>ion exchange</subject><subject>Isotherms</subject><subject>Kinetics</subject><subject>Manganese Compounds - chemistry</subject><subject>manganese oxides</subject><subject>Mathematical models</subject><subject>Nanoparticle</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Oxides - chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Removal</subject><subject>Sorption</subject><subject>sorption isotherms</subject><subject>Surface physical chemistry</subject><subject>Thermodynamics</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c2O0zAQAOAIgdiy8AIcwBek7iHBjmO7Rlyqip9KC3uAPVuuM2lcNXbXdtjtmRfHUcseEZKlkaxvZuyZonhNcEUw4e931c7YWNWY1BUmFeb8STEjWLJSEEyfFjOMa1JKIcVF8SLGHcaEMCafFxd1zQiTks6K38sQwVkzX6_XVyj6cEjWO5SP087HFEaTxgAtMhDsOCDrTDY-6JTvBu222kEE5B9sC2j-ffXt5uoDWqJDf4zW6H320W77lGPyKPWABjC9djYma9BBp_5eH18Wzzq9j_DqHC-L28-ffq6-ltc3X9ar5XVpmoamklFKJGZiQboNbTcG08a0kjJG2kZwrpkxHWxq1kjNQOIGMAPGORcEsDY1pZfF_FT3EPzdCDGpwUYD-33-gx-jykNb1A3jdPEflFDBBW8mWp-oCT7GAJ06BDvocMxoclzt1LQnNe1JYaLynnLSm3P9cTNA-5jydzEZvDsDHfMcu6DdVOPR8VxYUJbd25PrtFd6G7K5_ZE7cYyxEJxOrT6eBOTR_rIQVDQWnIHWBjBJtd7-66V_ABm3uhg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Gupta, K.</creator><creator>Bhattacharya, S.</creator><creator>Nandi, D.</creator><creator>Dhar, A.</creator><creator>Maity, A.</creator><creator>Mukhopadhyay, A.</creator><creator>Chattopadhyay, D.J.</creator><creator>Ray, N.R.</creator><creator>Sen, P.</creator><creator>Ghosh, U.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</title><author>Gupta, K. ; Bhattacharya, S. ; Nandi, D. ; Dhar, A. ; Maity, A. ; Mukhopadhyay, A. ; Chattopadhyay, D.J. ; Ray, N.R. ; Sen, P. ; Ghosh, U.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorption</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Arsenic(III)</topic><topic>Ceria supported hydrous manganese oxide</topic><topic>cerium</topic><topic>Cerium - chemistry</topic><topic>Cerium oxide</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Colloidal state and disperse state</topic><topic>desorption</topic><topic>energy</topic><topic>Entropy</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>General and physical chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>ion exchange</topic><topic>Isotherms</topic><topic>Kinetics</topic><topic>Manganese Compounds - chemistry</topic><topic>manganese oxides</topic><topic>Mathematical models</topic><topic>Nanoparticle</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Oxides - chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Removal</topic><topic>Sorption</topic><topic>sorption isotherms</topic><topic>Surface physical chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, K.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Nandi, D.</creatorcontrib><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Maity, A.</creatorcontrib><creatorcontrib>Mukhopadhyay, A.</creatorcontrib><creatorcontrib>Chattopadhyay, D.J.</creatorcontrib><creatorcontrib>Ray, N.R.</creatorcontrib><creatorcontrib>Sen, P.</creatorcontrib><creatorcontrib>Ghosh, U.C.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, K.</au><au>Bhattacharya, S.</au><au>Nandi, D.</au><au>Dhar, A.</au><au>Maity, A.</au><au>Mukhopadhyay, A.</au><au>Chattopadhyay, D.J.</au><au>Ray, N.R.</au><au>Sen, P.</au><au>Ghosh, U.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>377</volume><issue>1</issue><spage>269</spage><epage>276</epage><pages>269-276</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted] ► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process. Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22515993</pmid><doi>10.1016/j.jcis.2012.01.066</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2012-07, Vol.377 (1), p.269-276
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1038245638
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adsorption
Arsenic
Arsenic - chemistry
Arsenic(III)
Ceria supported hydrous manganese oxide
cerium
Cerium - chemistry
Cerium oxide
Chemistry
Chemistry, Physical
Colloidal state and disperse state
desorption
energy
Entropy
equations
Exact sciences and technology
Fourier transform infrared spectroscopy
General and physical chemistry
Hydrogen-Ion Concentration
ion exchange
Isotherms
Kinetics
Manganese Compounds - chemistry
manganese oxides
Mathematical models
Nanoparticle
Nanostructure
Nanostructures - chemistry
Oxides - chemistry
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Removal
Sorption
sorption isotherms
Surface physical chemistry
Thermodynamics
title Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic(III)%20sorption%20on%20nanostructured%20cerium%20incorporated%20manganese%20oxide%20(NCMO):%20A%20physical%20insight%20into%20the%20mechanistic%20pathway&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Gupta,%20K.&rft.date=2012-07-01&rft.volume=377&rft.issue=1&rft.spage=269&rft.epage=276&rft.pages=269-276&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2012.01.066&rft_dat=%3Cproquest_cross%3E1038245638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013767648&rft_id=info:pmid/22515993&rft_els_id=S0021979712003189&rfr_iscdi=true