Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway
[Display omitted] ► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption e...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2012-07, Vol.377 (1), p.269-276 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 1 |
container_start_page | 269 |
container_title | Journal of colloid and interface science |
container_volume | 377 |
creator | Gupta, K. Bhattacharya, S. Nandi, D. Dhar, A. Maity, A. Mukhopadhyay, A. Chattopadhyay, D.J. Ray, N.R. Sen, P. Ghosh, U.C. |
description | [Display omitted]
► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process.
Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process. |
doi_str_mv | 10.1016/j.jcis.2012.01.066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038245638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979712003189</els_id><sourcerecordid>1038245638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</originalsourceid><addsrcrecordid>eNqN0c2O0zAQAOAIgdiy8AIcwBek7iHBjmO7Rlyqip9KC3uAPVuuM2lcNXbXdtjtmRfHUcseEZKlkaxvZuyZonhNcEUw4e931c7YWNWY1BUmFeb8STEjWLJSEEyfFjOMa1JKIcVF8SLGHcaEMCafFxd1zQiTks6K38sQwVkzX6_XVyj6cEjWO5SP087HFEaTxgAtMhDsOCDrTDY-6JTvBu222kEE5B9sC2j-ffXt5uoDWqJDf4zW6H320W77lGPyKPWABjC9djYma9BBp_5eH18Wzzq9j_DqHC-L28-ffq6-ltc3X9ar5XVpmoamklFKJGZiQboNbTcG08a0kjJG2kZwrpkxHWxq1kjNQOIGMAPGORcEsDY1pZfF_FT3EPzdCDGpwUYD-33-gx-jykNb1A3jdPEflFDBBW8mWp-oCT7GAJ06BDvocMxoclzt1LQnNe1JYaLynnLSm3P9cTNA-5jydzEZvDsDHfMcu6DdVOPR8VxYUJbd25PrtFd6G7K5_ZE7cYyxEJxOrT6eBOTR_rIQVDQWnIHWBjBJtd7-66V_ABm3uhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013767648</pqid></control><display><type>article</type><title>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gupta, K. ; Bhattacharya, S. ; Nandi, D. ; Dhar, A. ; Maity, A. ; Mukhopadhyay, A. ; Chattopadhyay, D.J. ; Ray, N.R. ; Sen, P. ; Ghosh, U.C.</creator><creatorcontrib>Gupta, K. ; Bhattacharya, S. ; Nandi, D. ; Dhar, A. ; Maity, A. ; Mukhopadhyay, A. ; Chattopadhyay, D.J. ; Ray, N.R. ; Sen, P. ; Ghosh, U.C.</creatorcontrib><description>[Display omitted]
► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process.
Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2012.01.066</identifier><identifier>PMID: 22515993</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adsorption ; Arsenic ; Arsenic - chemistry ; Arsenic(III) ; Ceria supported hydrous manganese oxide ; cerium ; Cerium - chemistry ; Cerium oxide ; Chemistry ; Chemistry, Physical ; Colloidal state and disperse state ; desorption ; energy ; Entropy ; equations ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; General and physical chemistry ; Hydrogen-Ion Concentration ; ion exchange ; Isotherms ; Kinetics ; Manganese Compounds - chemistry ; manganese oxides ; Mathematical models ; Nanoparticle ; Nanostructure ; Nanostructures - chemistry ; Oxides - chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Removal ; Sorption ; sorption isotherms ; Surface physical chemistry ; Thermodynamics</subject><ispartof>Journal of colloid and interface science, 2012-07, Vol.377 (1), p.269-276</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</citedby><cites>FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2012.01.066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26016735$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22515993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, K.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Nandi, D.</creatorcontrib><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Maity, A.</creatorcontrib><creatorcontrib>Mukhopadhyay, A.</creatorcontrib><creatorcontrib>Chattopadhyay, D.J.</creatorcontrib><creatorcontrib>Ray, N.R.</creatorcontrib><creatorcontrib>Sen, P.</creatorcontrib><creatorcontrib>Ghosh, U.C.</creatorcontrib><title>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process.
Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.</description><subject>Adsorption</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Arsenic(III)</subject><subject>Ceria supported hydrous manganese oxide</subject><subject>cerium</subject><subject>Cerium - chemistry</subject><subject>Cerium oxide</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Colloidal state and disperse state</subject><subject>desorption</subject><subject>energy</subject><subject>Entropy</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>General and physical chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>ion exchange</subject><subject>Isotherms</subject><subject>Kinetics</subject><subject>Manganese Compounds - chemistry</subject><subject>manganese oxides</subject><subject>Mathematical models</subject><subject>Nanoparticle</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Oxides - chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Removal</subject><subject>Sorption</subject><subject>sorption isotherms</subject><subject>Surface physical chemistry</subject><subject>Thermodynamics</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c2O0zAQAOAIgdiy8AIcwBek7iHBjmO7Rlyqip9KC3uAPVuuM2lcNXbXdtjtmRfHUcseEZKlkaxvZuyZonhNcEUw4e931c7YWNWY1BUmFeb8STEjWLJSEEyfFjOMa1JKIcVF8SLGHcaEMCafFxd1zQiTks6K38sQwVkzX6_XVyj6cEjWO5SP087HFEaTxgAtMhDsOCDrTDY-6JTvBu222kEE5B9sC2j-ffXt5uoDWqJDf4zW6H320W77lGPyKPWABjC9djYma9BBp_5eH18Wzzq9j_DqHC-L28-ffq6-ltc3X9ar5XVpmoamklFKJGZiQboNbTcG08a0kjJG2kZwrpkxHWxq1kjNQOIGMAPGORcEsDY1pZfF_FT3EPzdCDGpwUYD-33-gx-jykNb1A3jdPEflFDBBW8mWp-oCT7GAJ06BDvocMxoclzt1LQnNe1JYaLynnLSm3P9cTNA-5jydzEZvDsDHfMcu6DdVOPR8VxYUJbd25PrtFd6G7K5_ZE7cYyxEJxOrT6eBOTR_rIQVDQWnIHWBjBJtd7-66V_ABm3uhg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Gupta, K.</creator><creator>Bhattacharya, S.</creator><creator>Nandi, D.</creator><creator>Dhar, A.</creator><creator>Maity, A.</creator><creator>Mukhopadhyay, A.</creator><creator>Chattopadhyay, D.J.</creator><creator>Ray, N.R.</creator><creator>Sen, P.</creator><creator>Ghosh, U.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</title><author>Gupta, K. ; Bhattacharya, S. ; Nandi, D. ; Dhar, A. ; Maity, A. ; Mukhopadhyay, A. ; Chattopadhyay, D.J. ; Ray, N.R. ; Sen, P. ; Ghosh, U.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5331905781fb3dbc034cd93551d4766a5ccfeb2549a5e904e05e566671e0ac233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorption</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Arsenic(III)</topic><topic>Ceria supported hydrous manganese oxide</topic><topic>cerium</topic><topic>Cerium - chemistry</topic><topic>Cerium oxide</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Colloidal state and disperse state</topic><topic>desorption</topic><topic>energy</topic><topic>Entropy</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>General and physical chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>ion exchange</topic><topic>Isotherms</topic><topic>Kinetics</topic><topic>Manganese Compounds - chemistry</topic><topic>manganese oxides</topic><topic>Mathematical models</topic><topic>Nanoparticle</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Oxides - chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Removal</topic><topic>Sorption</topic><topic>sorption isotherms</topic><topic>Surface physical chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, K.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Nandi, D.</creatorcontrib><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Maity, A.</creatorcontrib><creatorcontrib>Mukhopadhyay, A.</creatorcontrib><creatorcontrib>Chattopadhyay, D.J.</creatorcontrib><creatorcontrib>Ray, N.R.</creatorcontrib><creatorcontrib>Sen, P.</creatorcontrib><creatorcontrib>Ghosh, U.C.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, K.</au><au>Bhattacharya, S.</au><au>Nandi, D.</au><au>Dhar, A.</au><au>Maity, A.</au><au>Mukhopadhyay, A.</au><au>Chattopadhyay, D.J.</au><au>Ray, N.R.</au><au>Sen, P.</au><au>Ghosh, U.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>377</volume><issue>1</issue><spage>269</spage><epage>276</epage><pages>269-276</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted]
► Nanostructured cerium incorporated manganese oxide (NCMO) has high affinity for arsenic(III) binding at acid and neutral pH. ► Pseudo-second order equation describes the arsenic(III) sorption kinetics at pH 7.0 and 303K. ► Freundlich isotherm describes the arsenic(III) sorption equilibriums at pH 7.0 and 303K. ► Arsenic sorption process is endothermic but spontaneous. ► Arsenic(III) to arsenic(V) oxidation occurs on NCMO surface presumably via electron transfer process.
Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH=7.0±0.2, T=303±1.6K, and I=0.01M) of arsenic(III) sorption by NCMO described, respectively, the pseudo-second order and the Freundlich isotherm equations well. The sorption process was somewhat complicated in nature and divided into two different segments, initially very fast sorption followed by slow intraparticle diffusion process. Sorption reaction of arsenic(III) on NCMO was endothermic (ΔH°=+13.46kJmol−1) and spontaneous (ΔG°=−24.75 to −30.15kJmol−1 at T=283–323K), which took place with increasing entropy (ΔS°=+0.14kJmol−1K−1) at solid–liquid interface. Energy of arsenic(III) sorption estimated by analyzing the equilibrium data using the D–R isotherm model was 15.4kJmol−1, indicating the ion-exchange type mechanism. Raman, FT-IR, pH effect, desorption, etc. studies indicated that arsenic(III) was oxidized to arsenic(V) during the sorption process.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22515993</pmid><doi>10.1016/j.jcis.2012.01.066</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2012-07, Vol.377 (1), p.269-276 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038245638 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adsorption Arsenic Arsenic - chemistry Arsenic(III) Ceria supported hydrous manganese oxide cerium Cerium - chemistry Cerium oxide Chemistry Chemistry, Physical Colloidal state and disperse state desorption energy Entropy equations Exact sciences and technology Fourier transform infrared spectroscopy General and physical chemistry Hydrogen-Ion Concentration ion exchange Isotherms Kinetics Manganese Compounds - chemistry manganese oxides Mathematical models Nanoparticle Nanostructure Nanostructures - chemistry Oxides - chemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena Removal Sorption sorption isotherms Surface physical chemistry Thermodynamics |
title | Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic(III)%20sorption%20on%20nanostructured%20cerium%20incorporated%20manganese%20oxide%20(NCMO):%20A%20physical%20insight%20into%20the%20mechanistic%20pathway&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Gupta,%20K.&rft.date=2012-07-01&rft.volume=377&rft.issue=1&rft.spage=269&rft.epage=276&rft.pages=269-276&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2012.01.066&rft_dat=%3Cproquest_cross%3E1038245638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013767648&rft_id=info:pmid/22515993&rft_els_id=S0021979712003189&rfr_iscdi=true |