A singular function with a non-zero finite derivative
This paper exhibits, for the first time in the literature, a continuous strictly increasing singular function with a derivative that takes non-zero finite values at some points. For all the known “classic” singular functions—Cantor’s, Hellinger’s, Minkowski’s, and the Riesz–Nágy one, including its g...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-09, Vol.75 (13), p.5010-5014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5014 |
---|---|
container_issue | 13 |
container_start_page | 5010 |
container_title | Nonlinear analysis |
container_volume | 75 |
creator | Fernández Sánchez, Juan Viader, Pelegrí Paradís, Jaume Díaz Carrillo, Manuel |
description | This paper exhibits, for the first time in the literature, a continuous strictly increasing singular function with a derivative that takes non-zero finite values at some points. For all the known “classic” singular functions—Cantor’s, Hellinger’s, Minkowski’s, and the Riesz–Nágy one, including its generalizations and variants—the derivative, when it existed and was finite, had to be zero. As a result, there arose a strong suspicion (almost a conjecture) that this had to be the case for any singular function. We present here a singular function, constructed as a patchwork of known classic singular functions, with derivative 1 on a subset of the Cantor set. |
doi_str_mv | 10.1016/j.na.2012.04.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038244987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X12001447</els_id><sourcerecordid>1038244987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ba2fc935dad627abe3e23fded011f2df050ea6b408b3a9b0f5a10a600899cfff3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM2ZkSXi24zRhqxBfUiUWkNisF_sZXKVOsZMi-PWkKivTXe650j2MXXIoOPDqel0ELARwUUBZAFdHbMbrhcyV4OqYzUBWIldl9XbKzlJaAwBfyGrG1DJLPryPHcbMjcEMvg_Zlx8-MsxCH_Ifin3mfPADZZai3-Hgd3TOThx2iS7-cs5e7-9ebh_z1fPD0-1ylRspFkPeonCmkcqircQCW5IkpLNkgXMnrAMFhFVbQt1KbFpwCjlgBVA3jXHOyTm7OuxuY_85Uhr0xidDXYeB-jFpDrIWZdlMR-cMDlUT-5QiOb2NfoPxeyrpvSG91gH13pCGUk-GJuTmgNB0Yecp6mQ8BUPWRzKDtr3_H_4F5OltuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038244987</pqid></control><display><type>article</type><title>A singular function with a non-zero finite derivative</title><source>Elsevier ScienceDirect Journals</source><creator>Fernández Sánchez, Juan ; Viader, Pelegrí ; Paradís, Jaume ; Díaz Carrillo, Manuel</creator><creatorcontrib>Fernández Sánchez, Juan ; Viader, Pelegrí ; Paradís, Jaume ; Díaz Carrillo, Manuel</creatorcontrib><description>This paper exhibits, for the first time in the literature, a continuous strictly increasing singular function with a derivative that takes non-zero finite values at some points. For all the known “classic” singular functions—Cantor’s, Hellinger’s, Minkowski’s, and the Riesz–Nágy one, including its generalizations and variants—the derivative, when it existed and was finite, had to be zero. As a result, there arose a strong suspicion (almost a conjecture) that this had to be the case for any singular function. We present here a singular function, constructed as a patchwork of known classic singular functions, with derivative 1 on a subset of the Cantor set.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2012.04.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Construction ; Derivatives ; Mathematical analysis ; Nonlinearity ; Singular functions</subject><ispartof>Nonlinear analysis, 2012-09, Vol.75 (13), p.5010-5014</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ba2fc935dad627abe3e23fded011f2df050ea6b408b3a9b0f5a10a600899cfff3</citedby><cites>FETCH-LOGICAL-c327t-ba2fc935dad627abe3e23fded011f2df050ea6b408b3a9b0f5a10a600899cfff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X12001447$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Fernández Sánchez, Juan</creatorcontrib><creatorcontrib>Viader, Pelegrí</creatorcontrib><creatorcontrib>Paradís, Jaume</creatorcontrib><creatorcontrib>Díaz Carrillo, Manuel</creatorcontrib><title>A singular function with a non-zero finite derivative</title><title>Nonlinear analysis</title><description>This paper exhibits, for the first time in the literature, a continuous strictly increasing singular function with a derivative that takes non-zero finite values at some points. For all the known “classic” singular functions—Cantor’s, Hellinger’s, Minkowski’s, and the Riesz–Nágy one, including its generalizations and variants—the derivative, when it existed and was finite, had to be zero. As a result, there arose a strong suspicion (almost a conjecture) that this had to be the case for any singular function. We present here a singular function, constructed as a patchwork of known classic singular functions, with derivative 1 on a subset of the Cantor set.</description><subject>Construction</subject><subject>Derivatives</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Singular functions</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM2ZkSXi24zRhqxBfUiUWkNisF_sZXKVOsZMi-PWkKivTXe650j2MXXIoOPDqel0ELARwUUBZAFdHbMbrhcyV4OqYzUBWIldl9XbKzlJaAwBfyGrG1DJLPryPHcbMjcEMvg_Zlx8-MsxCH_Ifin3mfPADZZai3-Hgd3TOThx2iS7-cs5e7-9ebh_z1fPD0-1ylRspFkPeonCmkcqircQCW5IkpLNkgXMnrAMFhFVbQt1KbFpwCjlgBVA3jXHOyTm7OuxuY_85Uhr0xidDXYeB-jFpDrIWZdlMR-cMDlUT-5QiOb2NfoPxeyrpvSG91gH13pCGUk-GJuTmgNB0Yecp6mQ8BUPWRzKDtr3_H_4F5OltuA</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Fernández Sánchez, Juan</creator><creator>Viader, Pelegrí</creator><creator>Paradís, Jaume</creator><creator>Díaz Carrillo, Manuel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201209</creationdate><title>A singular function with a non-zero finite derivative</title><author>Fernández Sánchez, Juan ; Viader, Pelegrí ; Paradís, Jaume ; Díaz Carrillo, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ba2fc935dad627abe3e23fded011f2df050ea6b408b3a9b0f5a10a600899cfff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Construction</topic><topic>Derivatives</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Singular functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández Sánchez, Juan</creatorcontrib><creatorcontrib>Viader, Pelegrí</creatorcontrib><creatorcontrib>Paradís, Jaume</creatorcontrib><creatorcontrib>Díaz Carrillo, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández Sánchez, Juan</au><au>Viader, Pelegrí</au><au>Paradís, Jaume</au><au>Díaz Carrillo, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A singular function with a non-zero finite derivative</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-09</date><risdate>2012</risdate><volume>75</volume><issue>13</issue><spage>5010</spage><epage>5014</epage><pages>5010-5014</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This paper exhibits, for the first time in the literature, a continuous strictly increasing singular function with a derivative that takes non-zero finite values at some points. For all the known “classic” singular functions—Cantor’s, Hellinger’s, Minkowski’s, and the Riesz–Nágy one, including its generalizations and variants—the derivative, when it existed and was finite, had to be zero. As a result, there arose a strong suspicion (almost a conjecture) that this had to be the case for any singular function. We present here a singular function, constructed as a patchwork of known classic singular functions, with derivative 1 on a subset of the Cantor set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2012.04.015</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2012-09, Vol.75 (13), p.5010-5014 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038244987 |
source | Elsevier ScienceDirect Journals |
subjects | Construction Derivatives Mathematical analysis Nonlinearity Singular functions |
title | A singular function with a non-zero finite derivative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20singular%20function%20with%20a%20non-zero%20finite%20derivative&rft.jtitle=Nonlinear%20analysis&rft.au=Fern%C3%A1ndez%20S%C3%A1nchez,%20Juan&rft.date=2012-09&rft.volume=75&rft.issue=13&rft.spage=5010&rft.epage=5014&rft.pages=5010-5014&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2012.04.015&rft_dat=%3Cproquest_cross%3E1038244987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038244987&rft_id=info:pmid/&rft_els_id=S0362546X12001447&rfr_iscdi=true |