Modified potential theory for modeling supercritical gas adsorption

Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2012-06, Vol.37 (11), p.9137-9147
Hauptverfasser: Dundar, E., Zacharia, R., Chahine, R., Bénard, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9147
container_issue 11
container_start_page 9137
container_title International journal of hydrogen energy
container_volume 37
creator Dundar, E.
Zacharia, R.
Chahine, R.
Bénard, P.
description Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores. ► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.
doi_str_mv 10.1016/j.ijhydene.2012.03.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038240845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912006222</els_id><sourcerecordid>1038240845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfYieNl1kuxXbkrxCype9BzSZNKmbDdrkgr9925p9eppLs8778xDyDWFggKt79aFW692BnssGFBWAC-A0RMyoW0jcl62zSmZAK8h51SIc3IR4xqANlCKCZm9eeOsQ5MNPmGfnOqytEIfdpn1Idt4g53rl1ncDhh0cMnpkViqmCkTfRiS8_0lObOqi3h1nFPy-fT4MXvJ5-_Pr7OHea55U6VcNIzSigm7sJZyZG3FGWWtUFaVjVnwRSNqA4airSnUnHNVgtKlpRWauqyAT8ntYe8Q_NcWY5IbFzV2nerRb6OkwFtWQltWI1ofUB18jAGtHILbqLAbIbm3Jtfy15rcW5PA5WhtDN4cO1QcP7VB9drFvzSrBOPteN2U3B84HB_-dhhk1A57jcYF1Eka7_6r-gEmd4Yp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038240845</pqid></control><display><type>article</type><title>Modified potential theory for modeling supercritical gas adsorption</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dundar, E. ; Zacharia, R. ; Chahine, R. ; Bénard, P.</creator><creatorcontrib>Dundar, E. ; Zacharia, R. ; Chahine, R. ; Bénard, P.</creatorcontrib><description>Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores. ► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.03.021</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated carbon ; Adsorption ; Alternative fuels. Production and utilization ; Applied sciences ; DRA potential ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; MPTA ; Supercritical</subject><ispartof>International journal of hydrogen energy, 2012-06, Vol.37 (11), p.9137-9147</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</citedby><cites>FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2012.03.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25923806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dundar, E.</creatorcontrib><creatorcontrib>Zacharia, R.</creatorcontrib><creatorcontrib>Chahine, R.</creatorcontrib><creatorcontrib>Bénard, P.</creatorcontrib><title>Modified potential theory for modeling supercritical gas adsorption</title><title>International journal of hydrogen energy</title><description>Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores. ► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>DRA potential</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>MPTA</subject><subject>Supercritical</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfYieNl1kuxXbkrxCype9BzSZNKmbDdrkgr9925p9eppLs8778xDyDWFggKt79aFW692BnssGFBWAC-A0RMyoW0jcl62zSmZAK8h51SIc3IR4xqANlCKCZm9eeOsQ5MNPmGfnOqytEIfdpn1Idt4g53rl1ncDhh0cMnpkViqmCkTfRiS8_0lObOqi3h1nFPy-fT4MXvJ5-_Pr7OHea55U6VcNIzSigm7sJZyZG3FGWWtUFaVjVnwRSNqA4airSnUnHNVgtKlpRWauqyAT8ntYe8Q_NcWY5IbFzV2nerRb6OkwFtWQltWI1ofUB18jAGtHILbqLAbIbm3Jtfy15rcW5PA5WhtDN4cO1QcP7VB9drFvzSrBOPteN2U3B84HB_-dhhk1A57jcYF1Eka7_6r-gEmd4Yp</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Dundar, E.</creator><creator>Zacharia, R.</creator><creator>Chahine, R.</creator><creator>Bénard, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Modified potential theory for modeling supercritical gas adsorption</title><author>Dundar, E. ; Zacharia, R. ; Chahine, R. ; Bénard, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>DRA potential</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>MPTA</topic><topic>Supercritical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dundar, E.</creatorcontrib><creatorcontrib>Zacharia, R.</creatorcontrib><creatorcontrib>Chahine, R.</creatorcontrib><creatorcontrib>Bénard, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dundar, E.</au><au>Zacharia, R.</au><au>Chahine, R.</au><au>Bénard, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified potential theory for modeling supercritical gas adsorption</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>37</volume><issue>11</issue><spage>9137</spage><epage>9147</epage><pages>9137-9147</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores. ► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.03.021</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012-06, Vol.37 (11), p.9137-9147
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1038240845
source Access via ScienceDirect (Elsevier)
subjects Activated carbon
Adsorption
Alternative fuels. Production and utilization
Applied sciences
DRA potential
Energy
Exact sciences and technology
Fuels
Hydrogen
MPTA
Supercritical
title Modified potential theory for modeling supercritical gas adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20potential%20theory%20for%20modeling%20supercritical%20gas%20adsorption&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Dundar,%20E.&rft.date=2012-06-01&rft.volume=37&rft.issue=11&rft.spage=9137&rft.epage=9147&rft.pages=9137-9147&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.03.021&rft_dat=%3Cproquest_cross%3E1038240845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038240845&rft_id=info:pmid/&rft_els_id=S0360319912006222&rfr_iscdi=true