Modified potential theory for modeling supercritical gas adsorption
Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2012-06, Vol.37 (11), p.9137-9147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9147 |
---|---|
container_issue | 11 |
container_start_page | 9137 |
container_title | International journal of hydrogen energy |
container_volume | 37 |
creator | Dundar, E. Zacharia, R. Chahine, R. Bénard, P. |
description | Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores.
► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction. |
doi_str_mv | 10.1016/j.ijhydene.2012.03.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038240845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912006222</els_id><sourcerecordid>1038240845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfYieNl1kuxXbkrxCype9BzSZNKmbDdrkgr9925p9eppLs8778xDyDWFggKt79aFW692BnssGFBWAC-A0RMyoW0jcl62zSmZAK8h51SIc3IR4xqANlCKCZm9eeOsQ5MNPmGfnOqytEIfdpn1Idt4g53rl1ncDhh0cMnpkViqmCkTfRiS8_0lObOqi3h1nFPy-fT4MXvJ5-_Pr7OHea55U6VcNIzSigm7sJZyZG3FGWWtUFaVjVnwRSNqA4airSnUnHNVgtKlpRWauqyAT8ntYe8Q_NcWY5IbFzV2nerRb6OkwFtWQltWI1ofUB18jAGtHILbqLAbIbm3Jtfy15rcW5PA5WhtDN4cO1QcP7VB9drFvzSrBOPteN2U3B84HB_-dhhk1A57jcYF1Eka7_6r-gEmd4Yp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038240845</pqid></control><display><type>article</type><title>Modified potential theory for modeling supercritical gas adsorption</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dundar, E. ; Zacharia, R. ; Chahine, R. ; Bénard, P.</creator><creatorcontrib>Dundar, E. ; Zacharia, R. ; Chahine, R. ; Bénard, P.</creatorcontrib><description>Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores.
► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.03.021</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated carbon ; Adsorption ; Alternative fuels. Production and utilization ; Applied sciences ; DRA potential ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; MPTA ; Supercritical</subject><ispartof>International journal of hydrogen energy, 2012-06, Vol.37 (11), p.9137-9147</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</citedby><cites>FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2012.03.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25923806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dundar, E.</creatorcontrib><creatorcontrib>Zacharia, R.</creatorcontrib><creatorcontrib>Chahine, R.</creatorcontrib><creatorcontrib>Bénard, P.</creatorcontrib><title>Modified potential theory for modeling supercritical gas adsorption</title><title>International journal of hydrogen energy</title><description>Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores.
► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>DRA potential</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>MPTA</subject><subject>Supercritical</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfYieNl1kuxXbkrxCype9BzSZNKmbDdrkgr9925p9eppLs8778xDyDWFggKt79aFW692BnssGFBWAC-A0RMyoW0jcl62zSmZAK8h51SIc3IR4xqANlCKCZm9eeOsQ5MNPmGfnOqytEIfdpn1Idt4g53rl1ncDhh0cMnpkViqmCkTfRiS8_0lObOqi3h1nFPy-fT4MXvJ5-_Pr7OHea55U6VcNIzSigm7sJZyZG3FGWWtUFaVjVnwRSNqA4airSnUnHNVgtKlpRWauqyAT8ntYe8Q_NcWY5IbFzV2nerRb6OkwFtWQltWI1ofUB18jAGtHILbqLAbIbm3Jtfy15rcW5PA5WhtDN4cO1QcP7VB9drFvzSrBOPteN2U3B84HB_-dhhk1A57jcYF1Eka7_6r-gEmd4Yp</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Dundar, E.</creator><creator>Zacharia, R.</creator><creator>Chahine, R.</creator><creator>Bénard, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Modified potential theory for modeling supercritical gas adsorption</title><author>Dundar, E. ; Zacharia, R. ; Chahine, R. ; Bénard, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-97211529fbff13e285321289afa47db3b796d0d1ef6106333a40ac4f15ed64503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>DRA potential</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>MPTA</topic><topic>Supercritical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dundar, E.</creatorcontrib><creatorcontrib>Zacharia, R.</creatorcontrib><creatorcontrib>Chahine, R.</creatorcontrib><creatorcontrib>Bénard, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dundar, E.</au><au>Zacharia, R.</au><au>Chahine, R.</au><au>Bénard, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified potential theory for modeling supercritical gas adsorption</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>37</volume><issue>11</issue><spage>9137</spage><epage>9147</epage><pages>9137-9147</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Theoretical modeling of adsorption plays a crucial role in providing better understanding of the adsorption phenomena, isotherms and isosteric heats. However, when modeling the adsorption of gas mixtures containing hydrogen, it is necessary to accommodate a wide temperature range because of hydrogen's low critical temperature. In this work, we extend the multicomponent potential theory of adsorption's (MPTA) capability of predicting adsorption isotherms to a wide temperature range by introducing a temperature dependent Dubinin potential parameter and use it to model adsorption isotherms of supercritical hydrogen, nitrogen and methane on various activated carbons. This extended MPTA can accurately predict the adsorption isotherms when used with NIST equation of state (EOS). The resulting isosteric heats of adsorption of hydrogen agree well with the experimental data for similar volume filling scenarios. Hydrogen's low temperature adsorbed-phase pressure inside the activated carbon's micropore volume reaches the melting pressure of solid hydrogen. This causes the transition of adsorbed hydrogen from supercritical gas to solid-like phase which is clearly observed in our model. Our study, thus, provides a better understanding of physisorption of hydrogen inside the micropores.
► Extension of MPTA to cover a wide temperature range of hydrogen adsorption. ► Comparison of two adsorption potentials and two equations of state. ► Low temperature hydrogen density at the adsorbent interface near that of solid phase. ► Calculated isosteric heat for hydrogen agrees with that found in literature. ► NIST EOS and DRA potential is optimal combination for excess adsorption prediction.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.03.021</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2012-06, Vol.37 (11), p.9137-9147 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038240845 |
source | Access via ScienceDirect (Elsevier) |
subjects | Activated carbon Adsorption Alternative fuels. Production and utilization Applied sciences DRA potential Energy Exact sciences and technology Fuels Hydrogen MPTA Supercritical |
title | Modified potential theory for modeling supercritical gas adsorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20potential%20theory%20for%20modeling%20supercritical%20gas%20adsorption&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Dundar,%20E.&rft.date=2012-06-01&rft.volume=37&rft.issue=11&rft.spage=9137&rft.epage=9147&rft.pages=9137-9147&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.03.021&rft_dat=%3Cproquest_cross%3E1038240845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038240845&rft_id=info:pmid/&rft_els_id=S0360319912006222&rfr_iscdi=true |